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Modular Inverses

Modular Inverses

Recall that Z∗m = {a ∈ Zm | gcd(a,m) = 1} is the set of integers between
1 and m that are coprime to m.

Z∗m consists of exactly those integers that have modular inverses:

for every a ∈ Z∗m, there exists x ∈ Z∗m such that ax ≡ 1 (mod m).

In the RSA set-up to generate user keys, given e ∈ Z∗φ(n), we need to find
d ∈ Z∗φ(n) such that

ed ≡ 1 (mod φ(n)) .
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Modular Inverses

Computing Modular Inverses

Given a ∈ Z∗m, solve the linear congruence ax ≡ 1 (mod m) for x ∈ Z∗m.

We want x such that

m | ax − 1⇐⇒ ax − 1 = ym⇐⇒ ax −my = 1

for some y ∈ Z.

Can be solved using the Extended Euclidean Algorithm.

We only need to compute the Bi because we only need x , not y .

When using Bezout’s method, be sure to start with a = q0m + r0,
even if a < m (so q0 = 0), else you get the wrong count for the
number n of division steps.

Always check your answer!
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Modular Inverses

A Back Substitution Example

Solve 95x ≡ 1 (mod 317) for x (mod 317) using back substitution.

Here a = 95 and m = 317. The Euclidean algorithm yields

95 = 317 · 0 + 95

317 = 95 · 3 + 32 (1)

95 = 32 · 2 + 31 (2)

32 = 31 · 1 + 1 (3)

31 = 1 · 31 + 0

Thus, gcd(95, 317) = 1 and back substitution yields

1
(3)
= 32− 31

(2)
= 32− (95− 2 · 32) = 3 · 32− 95

(1)
= 3(317− 3 · 95)− 95 = 3 · 317 + (−10) · 95 .

So 1 ≡ (−10) · 95 (mod 317) and hence x ≡ −10 ≡ 307 (mod 317).
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Modular Inverses

Same Example Using Bezout’s Method

Solve 95x ≡ 1 (mod 317) for x (mod 317) using Bezout’s method.

Recall the Euclidean algorithm for a = 95 and b = 317:

95 = 317 · 0 + 95 q0 = 0

317 = 95 · 3 + 32 q1 = 3

95 = 32 · 2 + 31 q2 = 2

32 = 31 · 1 + 1 q3 = 1

31 = 1 · 31 + 0 q4 = 31

So n = 4 and our solution will be x ≡ (−1)4−1B4−1 ≡ −B3 (mod 317).

The Bezout tableau for the quantities Bk is

0 3 2 1

1 0 1 3 7 10

So x ≡ −10 ≡ 307 (mod 317).
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Efficiency of RSA

RSA – Recap

Public key: (n, e); private key d where

n = pq for distinct primes p, q;

1 < e < n, gcd(e, φ(n)) = 1;

ed ≡ 1 (mod φ(n))

and φ(n) = (p − 1)(q − 1).

Encrytion of M ∈ Z∗n: C ≡ Me (mod n).

Decryption of C ∈ Z∗n: M ≡ Cd (mod n).
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Efficiency of RSA

Efficiency of RSA

Set-up (need only be done once):

Prime generation uses a pseudo-random number generator (PRNG),
followed by a probable primality test (like the Fermat test).

Generating e again requires a PRNG and one gcd calculation (EA) –
or just pick your favourite e.

Computing n and φ(n) is negligible.

Computing d requires finding a modular inverse (EEA)

Encryption and decryption: modular exponentiation (like Diffie-Hellman).
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Security of RSA

Security of RSA

RSA Problem (extracting e-th roots modulo n):

Given e, n and C ∈ Z∗n, find M ∈ Z∗n with Me ≡ C (mod n).

Integer Factorization Problem (IFP):

Given an integer N > 1, find a non-trivial factor of N.

If an adversary can solve an instance of the IFP, she can solve the
RSA problem (by factoring n and finding the private key d in the
same way as the designer).

It is unknown if there are ways of solving the RSA problem without
factoring (or solving one of the other equivalent problem listed below).
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Security of RSA Mathematical Security of RSA

Total Breaks of RSA

The following approaches break RSA (assume (e, n) is known):

Factoring n, i.e. finding p, q

↓ φ(n) = (p− 1)(q− 1) ↑ Solve x2 − (n− φ(n) + 1)x + n = 0 for x

Finding φ(n)

↓ Solve ed ≡ 1 (mod φ(n)) ↑ See Algorithm 6.10 in Stinson-Paterson

Finding the private key d

Note:

The quadratic equation above has two solutions, namely p and q.

There is an efficient algorithm that given any multiple of φ(n) finds
φ(n) with high probability. Note that ed − 1 is such a multiple.
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Security of RSA Mathematical Security of RSA

Total Breaks of RSA (cont’d)

All three approaches on the previous slide are computationally equivalent:

if one can be achieved, any of the other two one can be achieved with
very little computational overhead.

so there are three equally good trapdoors here: {p, q}, φ(n) and d .

There is no proof that RSA is secure!

No proof that factoring is hard

Not proved that other methods to solve the RSA problem exist which
do not rely on factoring (i.e. not known whether breaking RSA is
equivalent to factoring n)

In any case, we need to design RSA systems such that n = pq cannot be
factored easily.
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Security of RSA Mathematical Security of RSA

Factoring Record

The fastest known factoring algorithm is again the Number Field Sieve
(slightly different from the DLP NFS, but invented first). Run time:

exp
(
c(log n)1/3(log log n)2/3

)
= nc(log log n/ log n)2/3

with
c = 3

√
64/9 = 1.92 . . .

Current RSA modulus factoring record: RSA-250 (250 decimal digits, 831
bits): Boudot-Gaudry-Guillevic-Heninger-Thomé-Zimmerman (February
2020, same people as the DLP record)

21403246502407449612644230728393335630086147151447550177977549208814180234471401366433455190958046796109928518724709145876873
96261921557363047454770520805119056493106687691590019759405693457452230589325976697471681738069364894699871578494975937497937

= 64135289477071580278790190170577389084825014742943447208116859632024532344630238623598752668347708737661925585694639798853367
∗ 33372027594978156556226010605355114227940760344767554666784520987023841729210037080257448673296881877565718986258036932062711

2700 core years with Intel Xeon Gold 6130 CPUs 2.1GHz as reference

See https://en.wikipedia.org/wiki/RSA_Factoring_Challenge
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Security of RSA Mathematical Security of RSA

Choice of RSA Parameters

Requirements for p and q:

1 Probable primes with high probability (say 2−100) — use a good
probabilistic primality test.

2 Large: at least 21536 ≈ 10463 (so n is 3072 bits)

3 Not too close together; |p − q| > 2128 for p, q ≈ 21536

4 p and q must be strong primes, i.e. p − 1, q − 1, p + 1, q + 1 all have
a large prime factor (see p. 291 of the Handbook of Applied
Cryptography).

E.g. pick a Sophie Germain prime p′ (so p = 2p′ + 1 is a safe prime)
so that (p + 1)/4 = (p′ + 1)/2 is prime or has a large prime factor;
same for q.

May also want to choose p′ − 1 to have a large prime factor to
avoid cycling attacks (where a modest number of repeated
encryptions “cycle back” to the plaintext)

Choosing random p, q may be sufficient (Rivest-Silverman 1999)
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Security of RSA Mathematical Security of RSA

Choice of RSA Parameters (cont’d)

Requirement for e:

For efficiency reasons, e is often chosen small; a popular choice is
e = 216 + 1 = 65537 (great for binary exponentiation, only two ‘1’
bits).

Beware of really small e for certain applications!

In practice, can use e = 3, but only when RSA is used in conjunction
with a secure padding mechanism (eg. OAEP — next week!)

Requirement for d :

d / n0.25 (Wiener, 1990)

d / n0.292 (Boneh & Durfee 2000, extension of Wiener’s attack)
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Security of RSA Attacks on Certain Scenarios

Attack Scenario: Common Modulus, Common Message

Two users with public keys (e1, n) and (e2, n) where gcd(e1, e2) = 1.

Alice sends both users the same message M, encrypted:

Ci ≡ Mei (mod n) , (i = 1, 2) .

The following attack finds M:

1 Use the Extended Euclidean Algorithm to obtain integers x , y with

xe1 + ye2 = 1 .

2 Then

C x
1 C

y
2 ≡ (Me1)x(Me2)y ≡ Me1x+e2y ≡ M1 ≡ M (mod n) .

Attack can be extended to more than two users sharing the same modulus.
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Security of RSA Attacks on Certain Scenarios

Attack Scenario: e = 3, Common Message

Three users with public keys (3, n1), (3, n2), (3, n3), gcd(n1, n2, n3) = 1.
(Note that if gcd(ni , nj) > 1, then ni and nj are factored!)

Alice sends all three users the same message M, encrypted:

Ci ≡ M3 (mod ni ) , (i = 1, 2, 3) .

The following attack finds M:
1 Use the Extended Euclidean Algorithm to obtain integers u, v ,w with

un2n3 + vn1n3 + wn2n2 = 1 .

(Apply EEA first to n1 and n2, then to n1n2 and n3.
2 Put

C ≡ un2n3C1 + vn1n3C2 + wn1n2C3 (mod n1n2n2) .

Then
C ≡ Ci ≡ M3 (mod ni ) (i = 1, 2, 3) .
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Security of RSA Attacks on Certain Scenarios

Attack Scenario: e = 3, Common Message (Cont’d)

3 Now we have

0 < C < n1n2n3

0 < M3 < n1n2n3

C ≡ M3 (mod n1n2n3)

This implies that C = M3 and hence M = 3
√
C .

Attack can be extended to any e and at least e users.
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Security of RSA Attacks on Certain Scenarios

Attack Scenario: e = 3, Three Similar Messages

Suppose a user has RSA public key (3, n).

Alice sends three messages that differ in a few places in a known way to
that user. Then these messages can be efficiently found by an adversary
using linear algebra modulo n.

Attack can be extended to any e and at least e similar messages with
known differences.
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Security of RSA Attacks on Certain Scenarios

Wiener’s Attack on Small d

Assume d < 4

√
n

36
≈ 0.408 4

√
n and q < p < 2q.

ed = 1 + kφ(n) where d , k, φ(n) are unknown. Can show that 1 ≤ k < d .

0 < kn − ed = k(n − φ(n))− 1 < d(n − φ(n))− 1 < 3d
√
n.

Divide by nd :

0 <
k

d
− e

n
<

3√
n
<

3

6d2
=

1

2d2
.

By the theory of convergents, it turns out that under these conditions

k = Ai , d = Bi ,

where Ai ,Bi are the Bezout sequences arising from applying the Euclidean
algorithm applied to e and n (easy to compute!)
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Security of RSA Multiplicative Attacks

Multiplicative Attacks on RSA

“Textbook” RSA is not secure against multiplicative attacks.

Multiplicative (or homomorphic) property of RSA:

(M1M2)e ≡ Me
1M

e
2 ≡ C1C2 (mod n)

i.e. the encryption of a product is the same as the product of the
encryptions.

This means that a factorization of the plaintext implies one of the
corresponding ciphertext, which can be exploited in two attacks.
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Security of RSA Multiplicative Attacks

Adaptive CCA on RSA

An attacker wishing the decryption M of some RSA ciphertext C proceeds
as follows:

1 Generates X ∈ Z∗n with X e 6≡ 1 (mod n).

2 Computes C ′ ≡ CX e (mod n) (this is the chosen ciphertext; note
that C ′ 6= C ).

3 Obtains the corresponding plaintext

M ′ ≡ (C ′)d ≡ Cd(X e)d ≡ MX (mod n)

4 Computes M ≡ M ′X−1 (mod n), where X−1 is the inverse of X
(mod n)
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Security of RSA Multiplicative Attacks

Meet-in-the-Middle Attack on RSA (Passive)

If M ≈ 2k for some bit length k , then with non-negligible probability, M is
composite and satisfies M = M1M2 with M1,M2 ≈ 2k/2.

The probability that a number of 40− 64 bits factors into equal-size
factors is between 18 and 50 percent (see Table 1 of “Why textbook
El Gamal and RSA encryption are insecure (extended abstract)” by
Boneh, Joux, and Nguyen, in ASIACRYPT 2000)).

The adversary builds a list L = {1e , 2e (mod n), . . . , b2k/2ce (mod n)}
and a list L′ of all their inverses (mod n).

She then computes C (i∗)e (mod n) (i∗ = 1, 2, 3, . . .) and searches for
a match je ∈ L (here (i∗)e is the inverse of ie modulo n).

If C (i∗)e ≡ je (mod n) for some j , then C ≡ (ij)e (mod n) and
hence M ≡ ij (mod n).

Requires 2 · 2k/2 modular exponentiations (rest is negligible).
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Security of RSA Multiplicative Attacks

Example Application of Meet-in-the-Middle

Hybrid encryption: consider the case where 2048-bit RSA modulus is used
to encrypt a 56-bit DES key.

Here, k = 56 and each ie (mod n) takes about log2(n) ≈ 2048 bits of
storage

The list requires 228 · 2048 = 239 bits of storage (about 64 GB)

Requires 229 modular exponentiations.

This is easily done on a PC.
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Security of RSA Multiplicative Attacks

Protecting Against the Multiplicative Property

The multiplicative property of RSA can be obscured by imposing a format
on plaintexts and then randomizing the formatted text.

Can defeat CCA by rejecting decryptions of “invalid” messages.

One example is RSA-OAEP (discussed later):

RSA plus optimal asymmetric encryption padding

plaintext is padded with 0’s and transformed to a statistically random
bit string via a reversible, randomized, unkeyed transformation.
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Security of RSA Multiplicative Attacks

Advantages of RSA

Advantages:

1 Seems to be mathematically secure.

2 Key size is “relatively” small — two 463-digit numbers — although
other PKCs have smaller keys (eg. elliptic curve systems).

3 No message expansion — ciphertexts and plaintexts have the same
length.

4 Can be used as a signature scheme (covered later).
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RSA – Conclusion

Disadvantages of RSA

Disadvantages:

1 Very slow compared to 3DES, AES, and other symmetric key
cryptosystems. Decryption is also slower than elliptic curve based
systems.

2 Finding keys is fairly expensive.
3 Security is unproved

See also the Etherium Foundation’s website on further RSA
security assumptions and cash bounties at https://rsa.cash

4 “Textbook” version leaks information and is vulnerable to a number
of attacks.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 9 25 / 34

Probabilistic Encryption

Probabilistic Encryption

One disadvantage of deterministic PKCs is that identical messages always
encrypt to the same ciphertext (like block ciphers in ECB mode).

particularly problematic if the message space is small (e.g. electronic
yes/no vote)

Probabilistic or randomized encryption utilizes randomness to attain a
provable, stronger level of security.

As a result, every message can have many possible encryptions, so a small
message space is no longer a problem.

leads to the notion of semantic security.
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Probabilistic Encryption El Gamal PKC

The El Gamal PKC

T. El Gamal (1985): randomized, security based on DLP — alternative to
RSA which was based on the integer factorization problem (IFP)

Set-up: the designer produces her public and private keys as follows:

1 Selects a large prime p and a primitive root g of p

2 Generates a random integer x with 1 < x < p − 1 and computes
y ≡ g x (mod p) where 1 ≤ y ≤ p − 1.

Public key: (p, g , y)
Private key: {x}

Note: multiple users may use the same g and p, but everyone should have
their own pair (x , y).

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 9 27 / 34

https://rsa.cash


Probabilistic Encryption El Gamal PKC

El Gamal Encryption

Messages for the designer are integers M, 0 < M < p (so M ∈ Z∗p).

To send M encrypted, proceed as follows:

1 Select a random k ∈ Z, 0 < k < p − 1.

2 Compute and send (C1,C2) where

C1 ≡ gk (mod p), 0 < C1 < p,

C2 ≡ Myk (mod p), 0 < C2 < p .
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Probabilistic Encryption El Gamal PKC

El Gamal Decryption

To decrypt (C1,C2), the designer computes

C2C
p−1−x
1 ≡ (Myk)(Cp−1−x

1 )

≡ (Mg xk)(gk(p−1−x))

≡ Mg xk+k(p−1)−kx

≡ M(gp−1)k

≡ M (mod p) .

Think of C1 as a “clue” that can be used to remove the “mask” yk in C2,
thus “unmasking” the encrypted message M.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 9 29 / 34

Probabilistic Encryption El Gamal PKC

An El Gamal Toy Example

p = 53, g = 2; x = 14, y ≡ 214 ≡ 7 (mod 53).

Private key: {14}; Public key (53, 2, 7)

Encryption of M = 10 under public key (53, 2, 7) is (C1,C2) where

the random number selected is k = 6

C1 ≡ 26 ≡ 11 (mod 53)

C2 ≡ 10 · 76 ≡ 49 (mod 53)

Decryption of (C1,C2) = (11, 49) under private key 14 is

49 · 1153−1−14 ≡ 49 · 1138 ≡ 10 (mod 53) .
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Probabilistic Encryption El Gamal PKC

Summary of El Gamal

As with DH key establishment, the security of this system relies on the
presumed difficulty of the DLP, but it is unknown whether there are other
ways of breaking El Gamal.

Disadvantages:

Message expansion by a factor of 2 (ciphertext is twice as long as the
plaintext).

Twice as much computational work for encrypting as RSA:

two exponentiations (and one multiplication), as opposed to one
exponentiation only for RSA.

A new random number k must be generated for each message.

Advantages: randomized, different security assumption, works in other
settings (eg. elliptic curves)
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Provable Security Against Passive Attacks

Polynomial Security

Definition 1 (Polynomial security, IND-CPA security)

A PKC is said to be polynomially secure or IND-CPA secure if no passive
adversary can in expected polynomial time select two plaintexts M1 and
M2 and then correctly distinguish between encryptions of M1 and M2 with
probability significantly greater than 1/2.

IND-CPA: indistinguishability under chosen plaintext attacks.
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Provable Security Against Passive Attacks

Semantic Security

Definition 2 (Semantic security)

A PKC is said to be semantically secure if for all probability distributions
over the message space, anything that can be computed by a passive
adversary in expected polynomial time about the plaintext given the
ciphertext can also be computed in expected polynomial time without the
ciphertext.

Intuitively, semantic security is a weaker version of perfect secrecy

an adversary with polynomially-bounded computational resources (as
opposed to infinite resources in perfect security) can learn nothing
about the plaintext from the ciphertext.
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Provable Security Against Passive Attacks

Equivalence

Theorem 1

A PKC is semantically secure if and only if it is polynomially secure.

Although El Gamal is randomized, it is not semantically secure as
presented here (see Assignment 3).

We will soon look at a PKC that is semantically secure assuming that a
certain number theoretic problem (not DLP or IFP) is hard. But first, we
need a bit more number theory.
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