CPSC 418/MATH 318 Introduction to Cryptography

Yet More Number Theory, Goldwasser-Micali PKC, More on Provable Security, RSA-OAEP, Digital Signatures

Renate Scheidler
Department of Mathematics \& Statistics
Department of Computer Science
University of Calgary
Week 10

Question: How can you tell the difference between a good cryptography joke and a random string of words?
Answer: You can't. They're indistinguishable.

Outline

(1) Quadratic Residuosity

- Legendre Symbol
- Jacobi SymbolGoldwasser-Micali PKCProvable Security Against Active AttacksRSA-OAEPWhere are we at?Digital Signatures
- Signatures via Public Key Cryptosystems

Quadratic Residuosity

Quadratic Residuosity

Definition 1 (Quadratic residues and non-residues)

Let $m \in \mathbb{N}$ and $a \in \mathbb{Z}_{m}^{*}$. Then a is said to be a quadratic residue modulo m if there exists some $x \in \mathbb{Z}$ such that $x^{2} \equiv a(\bmod m)$. a is a quadratic non-residue modulo m otherwise.

So the quadratic residues modulo m are exactly the squares modulo m.

Notation:

- $Q R_{m}$: set of quadratic residues modulo m.
- $Q N_{m}$: set of quadratic non-residues modulo m.

Note 1
 $\mathbb{Z}_{m}^{*}=Q R_{m} \cup Q N_{m}$.

Quadratic Residuosity

Prime and Composite Moduli

Suppose $m=p$, an odd prime. For any primitive root g of p

- $Q R_{p}$ is the set of even powers of $g: g^{2 i}, 0 \leq i \leq(p-3) / 2$
- $Q N_{p}$ is the set of odd powers of g : $g^{2 i+1}, 0 \leq i \leq(p-3) / 2$

So $\left|Q R_{p}\right|=\left|Q N_{p}\right|=(p-1) / 2 . \quad$ (Not true for composite moduli!)

Example 2

Find the quadratic residues and the quadratic non-residue modulo $p=7$

$$
\begin{aligned}
& 1^{2} \equiv 1(\bmod 7), 2^{2} \equiv 4(\bmod 7), 3^{2} \equiv 2(\bmod 7), \\
& 4^{2} \equiv 2(\bmod 7), 5^{2} \equiv 4(\bmod 7), 6^{2} \equiv 1(\bmod 7) . \\
& \text { So } Q R_{7}=\{1,2,4\} \text { and by elimination } Q N_{7}=\{3,5,6\} .
\end{aligned}
$$

Theorem 1

$a \in Q R_{n}$ if and only if $a \in Q R_{p}$ for all primes p dividing n.

Euler's Criterion

The Legendre Symbol

Recall Fermat's Theorem: $a^{p-1} \equiv 1(\bmod p)$ for p prime and $a \in \mathbb{Z}_{p}^{*}$.

$$
\text { For } \begin{aligned}
p \text { odd: } & \\
& a^{p-1} \equiv 1 \quad(\bmod p) \\
& \Longleftrightarrow p \text { divides } a^{p-1}-1=\left(a^{\frac{p-1}{2}}+1\right)\left(a^{\frac{p-1}{2}}-1\right) \\
& \Longleftrightarrow p \text { divides } a^{\frac{p-1}{2}}+1 \text { or } p \text { divides } a^{\frac{p-1}{2}}-1 \\
& \Longleftrightarrow a^{\frac{p-1}{2}} \equiv \pm 1 \quad(\bmod p) .
\end{aligned}
$$

This is is almost like "taking square roots" of the Fermat congruence!

$$
\begin{aligned}
& \text { Theorem } 2 \text { (Euler's Criterion) } \\
& a \in Q R_{p} \text { if and only if } a^{\frac{p-1}{2}} \equiv 1(\bmod p) \text {. }
\end{aligned}
$$

Then $a \in Q N_{p}$ if and only if $a^{\frac{p-1}{2}} \equiv-1(\bmod p)$.

Revised Quadratic Residue Theorems

Example 4

$\left(\frac{2}{7}\right)=1$ and $\left(\frac{3}{7}\right)=-1$.

Recall Theorem 2 from last week: $a \in Q R_{n}$ iff $a \in Q R_{p}$ for all primes $p \mid n$.

Remark 2 (Reformulation of Theorem 2)

$a \in Q R_{n}$ if and only if $\left(\frac{a}{p}\right)=1$ for all primes p dividing n.

Note 3 (Euler's Criterion revisited)

$a^{\frac{p-1}{2}} \equiv\left(\frac{a}{p}\right)(\bmod p)$ for all $a \in \mathbb{Z}$.

Legendre symbols are "quadratic residue indicators" modulo primes:

Definition 3 (Legendre symbol)

Let p be an odd prime. The Legendre symbol $\left(\frac{a}{p}\right)$ is defined as:

$$
\left(\frac{a}{p}\right)= \begin{cases}0 & \text { if } p \mid a \\ 1 & \text { if } a \in Q R_{p} \\ -1 & \text { if } a \in Q N_{p}\end{cases}
$$

We can compute Legendre symbols - and by Euler's criterion test whether or not $a \in Q R_{p}$ - in polynomial time using binary exponentiation.

Example: Textbook El Gamal is not Semantically Secure

An attacker can chose $M_{1} \in Q R_{p}$ and $M_{2} \in Q N_{p}$ and distinguish between their encryptions in polynomial time.

- uses properties of quadratic residues and the Legendre symbol
- see Assignment 3 for the full attack

Solution: replace g by $h \equiv g^{2}(\bmod p)$ everywhere

- every quantity occurring in El Gamal is a quadratic residue modulo p.
- can prove that this variation of El Gamal is semantically secure, assuming the decisional Diffie-Hellman problem is intractable.

Decisional DHP: given $g, g^{a}, g^{b}, g^{c}(\bmod p)$, determine whether $\left.g^{c} \equiv g^{a b}(\bmod p)\right)$

The Jacobi Symbol

Definition 5 (Jacobi symbol)

Let $Q \in \mathbb{N}$ be odd with prime factorization $Q=\prod_{i=1}^{r} q_{i}^{e_{i}}$, and let $P \in \mathbb{Z}$.
The Jacobi symbol $\left(\frac{P}{Q}\right)$ is defined as

$$
\left(\frac{P}{Q}\right)=\prod_{i=1}^{r}\left(\frac{P}{q_{i}}\right)^{e_{i}}
$$

where $\left(\frac{P}{q_{i}}\right)$ is the Legendre symbol.

Note 4

If Q is prime, then the Jacobi symbol $\left(\frac{P}{Q}\right)$ and the Legendre symbol $\left(\frac{P}{Q}\right)$ are the same.

Computation of Jacobi Symbols

Given the prime factorization of Q, the Jacobi symbol $\left(\frac{P}{Q}\right)$ can be computed in polynomial time:

- Each Legendre symbol $\left(\frac{P}{q_{i}}\right)$ can be computed in polynomial time via binary exponentiation (due to Euler's criterion).

However, properties (1), (2), (4) and (5) on the previous slide make it possible to compute $\left(\frac{P}{Q}\right)$ in polynomial time without factoring Q.

- Method is reminiscent of the Euclidean Algorithm.
- Best illustrated with an example:

Properties of the Jacobi Symbol

$$
\begin{align*}
\left(\frac{P}{Q}\right) & =\left(\frac{P \bmod Q}{Q}\right) \tag{1}\\
\left(\frac{P_{1} P_{2}}{Q}\right) & =\left(\frac{P_{1}}{Q}\right)\left(\frac{P_{2}}{Q}\right) \tag{2}\\
\left(\frac{P}{Q_{1} Q_{2}}\right) & =\left(\frac{P}{Q_{1}}\right)\left(\frac{P}{Q_{2}}\right) \tag{3}\\
\left(\frac{2}{Q}\right) & =(-1)^{\frac{Q^{2}-1}{8}}, \quad\left(\frac{-1}{Q}\right)=(-1)^{\frac{Q-1}{2}}, \quad\left(\frac{1}{Q}\right)=1 \tag{4}
\end{align*}
$$

If P is odd:

$$
\begin{equation*}
\left(\frac{P}{Q}\right)=\left(\frac{Q}{P}\right)(-1)^{\frac{P-1}{2} \frac{Q-1}{2}} \quad \text { (law of quadratic reciprocity) } \tag{5}
\end{equation*}
$$

$$
\begin{aligned}
\left(\frac{127}{35}\right) & =\left(\frac{127 \bmod 35}{35}\right)=\left(\frac{22}{35}\right)=\left(\frac{2}{35}\right)\left(\frac{11}{35}\right) \\
& =(-1)^{\frac{35^{2}-1}{8}}\left(\frac{11}{35}\right)=(-1)^{\text {odd }}\left(\frac{11}{35}\right)=-\left(\frac{11}{35}\right) \\
& =-(-1)^{\frac{11-1}{2} \frac{35-1}{2}}\left(\frac{35}{11}\right)=-(-1)^{\text {odd }}\left(\frac{35}{11}\right)=\left(\frac{35}{11}\right) \\
& =\left(\frac{35 \bmod 11}{11}\right)=\left(\frac{2}{11}\right)=(-1)^{\frac{11^{2}-1}{8}}=(-1)^{\text {odd }}=-1 .
\end{aligned}
$$

Note: In fact $\left(\frac{127}{5}\right)=-1$ and $\left(\frac{127}{7}\right)=1$, so $\left(\frac{127}{35}\right)=(-1) \cdot 1=-1$.

Example: Leakage in Textbook RSA

The Quadratic Residuosity Problem

Recall Remark 2: $a \in Q R_{n}$ iff $\left(\frac{a}{p}\right)=1$ for all primes $p \mid n$.
So when n is composite, we can have $\left(\frac{a}{n}\right)=1$, even though $a \notin Q R_{n}$.

Example 6

$\left(\frac{2}{15}\right)=\left(\frac{2}{3}\right)\left(\frac{2}{5}\right)=(-1)(-1)=1$. So $2 \notin Q R_{15}$ but $\left(\frac{2}{15}\right)=1$.

Definition 7 (Quadratic Residuosity Problem (QRP))

Given an odd composite integer n and any $a \in \mathbb{Z}$ with $\left(\frac{a}{n}\right)=1$, determine whether $a \in Q R_{n}$.

Note 5

By Remark 1, the Integer Factorization Problem (IFP) is at least as hard as the QRP. Equivalence is believed, but unproved.

| Renate Scheidler (University of Calgary) \quad CPSC 418/MATH 318 | Week 10 | $13 / 44$ |
| :--- | :--- | :--- | :--- |

Pseudosquares

Definition 8 (Pseudosquare)

Let $n=p q$ with distinct odd primes p, q. A pseudosquare $(\bmod n)$ is an integer $a \in \mathbb{Z}$ with $\left(\frac{a}{n}\right)=1$ and a is a quadratic non-residue $(\bmod n)$.
$\left(\frac{a}{n}\right)=1$ makes a "look like" a quadratic residue $(\bmod n)$, but $a \notin Q R_{n}$. Example 8 above establishes that 2 is a pseudosquare modulo 15 .

Example 9 (QRP for Pseudosquares)

If $n=p q$ (p, q odd primes), and $\left(\frac{a}{n}\right)=1$, then there are two possibilities:

- Case 1: if $\left(\frac{a}{p}\right)=\left(\frac{a}{q}\right)=1$, then a is a quadratic residue modulo n.
- Case 2: if $\left(\frac{a}{p}\right)=\left(\frac{a}{q}\right)=-1$, then a is a pseudosquare modulo n.

Here, QRP asks to distinguish quadratic residues (squares) from pseudosquares.

The Goldwasser-Micali PKC

Example 9 above is the basis for the Goldwasser-Micali PKC.
Achieves semantic security assuming the intractability of the QRP.

- Private key: (p, q) where p and q are distinct large primes.
- Public key: (n, y) where $n=p q$ and y is a pseudo-square modulo n.

Note 6

How to find y :

- Generate random integers $y \in \mathbb{Z}_{n}^{*}$ until a pseudosquare is found.
- Since there are four combinations $(\pm 1, \pm 1)$ for $\left(\left(\frac{y}{p}\right),\left(\frac{y}{q}\right)\right)$, one in four choices of y yields $(-1,-1)$.
- Hence, we expect to find a pseudosquare $(\bmod n)$ after four trials at a value of y.

Encryption

Decryption

To encrypt a message M intended for a user with the above public/private key pair, proceed as follows:
(1) Represent M as a bit-string $\left(m_{1}, m_{2}, \ldots, m_{t}\right)\left(m_{i} \in\{0,1\}\right)$.
(2) For $i=1, \ldots, t$:
(- Select random $r_{i} \in \mathbb{Z}_{n}^{*}$.
(-) Put $c_{i} \equiv y^{m_{i}} r_{i}^{2}(\bmod n)$ with $0<c_{i}<n$
(so $c_{i} \equiv r_{i}^{2}(\bmod n)$ if $m_{i}=0$ and $c_{i} \equiv y r_{i}^{2}(\bmod n)$ if $\left.m_{i}=1\right)$.
(3) Send $C=\left(c_{1}, c_{2}, \ldots, c_{t}\right)$.

To decrypt $C=\left(c_{1}, c_{2}, \ldots, c_{t}\right)$, the recipient proceeds as follows:
(1) for $i=1, \ldots, t$:

- Compute the Legendre symbol $e_{i}=\left(\frac{c_{i}}{p}\right)$.
(1) $m_{i}=\left(1-e_{i}\right) / 2 \quad$ (so $m_{i}=0$ if $e_{i}=1$ and $m_{i}=1$ if $e_{i}=-1$).
(2) $M=\left(m_{1}, m_{2}, \ldots, m_{t}\right)$.

Proof that decryption is correct.

For all $i \in\{1, \ldots, t\}$, we have

$$
e_{i}=\left(\frac{c_{i}}{p}\right)=\left(\frac{y^{m_{i}} r_{i}^{2}}{p}\right)=\left(\frac{y}{p}\right)^{m_{i}}\left(\frac{r_{i}}{p}\right)^{2}=\left(\frac{y}{p}\right)^{m_{i}}(\pm 1)^{2}=\left(\frac{y}{p}\right)^{m_{i}}=(-1)^{m_{i}}
$$

Thus, if $e_{i}=1$ then $m_{i}=0$ and if $e_{i}=-1$ then $m_{i}=1$. \square

Polynomial Security of Goldwasser-Micali

Proof sketch of polynomial security.

Since r_{i} is selected at random:

- r_{i}^{2} is a random quadratic residue modulo n
- thus, $y r_{i}^{2}$ is a random pseudosquare modulo n.

The cryptanalyst only sees a sequence of r_{i}^{2} or $y r_{i}^{2}$ (quadratic residues and pseudosquares), and as the QRP is hard, she cannot distinguish one from the other.

Major disadvantages:

- Huge message expansion, by a factor of $\log _{2}(n)$: a t-bit message yields a ciphertext of length $\approx t \log _{2}(n)$
- Costly decryption algorithm (t Legendre symbols)

IND-CCA1 and IND-CCA2 Security

To address chosen ciphertext attacks, we need even stronger security notions than semantic/polynomial security

Definition 10 (IND-CCA1 and IND-CCA2 security)

A PKC is IND-CCA (or IND-CCA1) secure if it satisfies indistinguishability under chosen ciphertext attacks; in other words, no (active) adversary with blackbox access to a decryption oracle (that decrypts arbitrary ciphertexts) can in expected polynomial time select two plaintext messages M_{1} and M_{2} and then correctly distinguish between encryptions of M_{1} and M_{2} with probability significantly greater than $1 / 2$.

A PKC is IND-CCA2 secure if it satisfies indistinguishability under adaptive chosen ciphertext attacks, i.e. an attacker may use the decryption oracle adaptively (of course as always, she may not submit the encryption given to her to distinguish M_{1} from M_{2}).

Provable Security Against Active Attacks

Idea of Malleability

Recall the multiplicative attacks on RSA where an attacker proceeds as follows:
(1) Generates $X \in \mathbb{Z}_{n}^{*}$ with $X^{e} \not \equiv 1(\bmod n)$.
(2) Computes $C^{\prime} \equiv C X^{e}(\bmod n)$ (this is the chosen ciphertext; note that $C^{\prime} \neq C$).
(3) Obtains the corresponding plaintext

$$
M^{\prime} \equiv\left(C^{\prime}\right)^{d} \equiv C^{d}\left(X^{e}\right)^{d} \equiv M X \quad(\bmod n)
$$

(Computes $M \equiv M^{\prime} X^{-1}(\bmod n)$, where X^{-1} is the inverse of X $(\bmod n)$

The attacker can generate C^{\prime} from C in such a way that M^{\prime} is related to M in a known, efficiently computable manner (i.e. C is malleable).

IND-CCA1 and IND-CCA2 Security, cont.

IND-CCA has the same definition as as polynomial security except that access to a decryption oracle is granted. It is the active attack equivalent of semantic security.

In addition, for IND-CCA2, an adaptive CCA strategy is permitted.
Security levels:

- IND-CCA2 - indistinguishability under adaptive chosen ciphertext attacks
- IND-CCA1 - indistinguishability under (non-adaptive) chosen ciphertext attacks
- IND-CPA - indistinguishability under chosen plaintext attacks (same as polynomial security)

Note that IND-CCA2 \Longrightarrow IND-CCA1 \Longrightarrow IND-CPA.

Provable Security Against Active Attacks

Non-Malleability

Definition 11 (Non-malleability)

A PKC is non-malleable if, given a ciphertext C corresponding to some message M, it is computationally infeasible to generate a different ciphertext C^{\prime} whose decryption M^{\prime} is related to M in some known manner, i.e. $M^{\prime}=f(M)$ for some arbitrary but known (efficiently invertible) function f.

Non-malleability provides data integrity of ciphertexts without any source identification (public-key analogue of "encrypt-then-MAC").

We have

- NM-CPA \Longrightarrow IND-CPA
- NM-CCA1 \Longrightarrow IND-CCA1
- NM-CCA2 \Longleftrightarrow IND-CCA2

It is known that IND-CPA \nRightarrow NM-CPA and IND-CCA1 \nRightarrow NM-CCA1.

Plaintext Awareness

Plaintest awareness is a very strong notion of security.

Definition 12 (Plaintext awareness)

A PKC is plaintext-aware if it is computationally infeasible for an adversary to produce a "valid" ciphertext (whose decryption has prescribed redundancy) without knowledge of the corresponding plaintext.

This means it is infeasible to create a valid ciphertext without being aware of the corresponding plaintext.

A plaintext-aware PKC resists adaptive CCAs because any adaptive modification of a target ciphertext will with high probability not be "valid."

- Plaintext awareness \Longrightarrow Indistinguishability.
- Plaintext awareness \Longrightarrow Non-malleability.

Standardized in RSA's PKCS\#1, IEEE P1363, e-commerce protocol SET (Secure Electronic Transaction)

Parameters

- n - length of plaintext messages to encrypt (in bits)
- (N, e) - Alice's RSA public key (N has $k=n+k_{0}+k_{1}$ bits, where $2^{-k_{0}}$ and $2^{-k_{1}}$ must be sufficiently small). For example, if $k=3072$, can take $k_{0}=k_{1}=128$ and $n=2816$.
- d - Alice's RSA private key
- $G:\{0,1\}^{k_{0}} \mapsto\{0,1\}^{k-k_{0}}$ (random function)
- $H:\{0,1\}^{k-k_{0}} \mapsto\{0,1\}^{k_{0}}$ (random function)

: $\{0,1\}-k 0,\{0,1\}$ (random function)

Optimal Asymmetric Encryption Padding (OAEP):

- Bellare and Rogaway, Eurocrypt 1994
- An invertible transformation from a PKC plaintext space to the domain of a one-way trapdoor function (e.g. a public key encryption map).

OAEP augments PKCs to provide plaintext awareness by adding redundancy and transforming the plaintext before encryption. It works with most PKCs.

RSA-OAEP
 Encryption

Encryption (message M):

(1) Generate a random k_{0}-bit number r.
(2) Compute $s=\left(M \| 0^{k_{1}}\right) \oplus G(r)$ (append $k_{1} 0$ bits to M for data integrity checking and XOR with $G(r)$). Note: s has $n+k_{1}=k-k_{0}$ bits.
(0) Compute $t=r \oplus H(s)$. Note: t has k_{0} bits, so $(s \| t)$ has k bits (same as N), but could be a bit bigger than N. If $(s \| t) \geq N$, go to 1 (make sure concatenation of s and t as an integer is less than the RSA modulus).

- RSA-encrypt $(s \| t)$, i.e., compute $C \equiv(s \| t)^{e}(\bmod N)$.

$$
C \equiv\left(\left(M \| 0^{k_{1}} \oplus G(r)\right) \|\left(r \oplus H\left(M \| 0^{k_{1}} \oplus G(r)\right)\right)\right)^{e}(\bmod N)
$$

Decryption

Security of RSA-OAEP

$$
C \equiv\left(\left(M \| 0^{k_{1}} \oplus G(r)\right) \|\left(r \oplus H\left(M \| 0^{k_{1}} \oplus G(r)\right)\right)\right)^{e} \quad(\bmod N) .
$$

Decryption (ciphertext C):

(1) Compute $(s \| t) \equiv C^{d}(\bmod N)$.

$$
C^{d} \equiv\left(M \| 0^{k_{1}} \oplus G(r)\right) \|\left(r \oplus H\left(M \| 0^{k_{1}} \oplus G(r)\right)\right) \quad(\bmod N)
$$

(2) Compute $u=t \oplus H(s)$ (k_{0} bit) and $v=s \oplus G(u)$ ($k-k_{0}$ bits).

$$
\begin{gathered}
\left.u=t \oplus H(s)=\left(r \oplus H\left(M \| 0^{k_{1}} \oplus G(r)\right)\right) \oplus H\left(M \| 0^{k_{1}} \oplus G(r)\right)\right)=r \\
v=s \oplus G(u)=\left(M \| 0^{k_{1}} \oplus G(r)\right) \oplus G(r)=M \| 0^{k_{1}}
\end{gathered}
$$

(3) Output M if $v=\left(M \| 0^{k_{1}}\right)$ (i.e. the decrypted message has the required redundancy), otherwise reject as invalid.

Random Oracle Model

IND-CCA2 Security without Random Oracles

RSA-OAEP's proof of security relies on the assumption that the functions G and H are random, i.e. mathematical functions mapping every possible query (input) to a random response from its output domain (output).

Such functions are referred to as random oracles, and security proofs relying on this type of assumption are said to use the random oracle model (ROM).

In practice, G and H are realized with a hash function like SHA-3.

- In this case, the encryption scheme cannot be proven to be plaintext-aware.
- Nevertheless provides much greater security assurances than standard RSA

Observations:

- Properties 1 and 2 provide non-repudiation: if there is a dispute over a signature (a receiver claims that the sender signed the message, whereas the signer claims they didn't), anyone can resolve the dispute. For ordinary written signatures, one might need a hand-writing expert.
- Signatures are different from MACs:
- both sender and receiver can generate a MAC, whereas only the sender can generate a signature.
- only sender and receiver can verify a MAC, whereas anyone can verify a signature.
- In order to prevent replay attacks (replay a signed message later), it may be necessary to include a time stamp or sequence numbers in the signature.

Digital Signatures: Definition

Data origin authentication is usually achieved by means of a signature, i.e. a means by which the recipient of a message can authenticate the source of the message.

Definition 13 (Digital signature)

A means for data origin authentication that should have two properties:
(1) Only the sender can produce their signature.
(2) Anyone should be easily able to verify the validity of the signature.

Signature Capable PKCs

Definition 14 (Signature capability)

A PKC is signature capable if $\mathcal{M}=\mathcal{C}$.
As a result, in a signature capable PKC, decryptions are right and left inverses, i.e. actual inverses, of encryptions (because $\mathcal{M}=\mathcal{C}$ implies that the encryption injections are actually bijections).
In particular $E_{K_{1}}\left(D_{K_{2}}(M)\right)=M$ for all $M \in \mathcal{M}$.

Example 15

RSA has signature capability. El Gamal and Goldwasser-Micali do not.

Note that $\mathcal{M} \neq \mathcal{C}$ for El Gamal and Goldwasser-Micali.

Signatures Without Secrecy Using PKC

Alice wishes to send a non-secret message M to Bob along with a signature S that authenticates her to Bob.

She sends (A, M, S) where

- A is her identity,
- M is the message,
- $S=D_{A}(M)$ is the "decryption" of M under her private key.

To verify S, Bob

- checks A and looks up Alice's public key,
- computes the "encryption" $E_{A}(S)$ of S under Alice's public key,
- accepts the signature if and only if $M=E_{A}(S)$

Note that $E_{A}(S)=E_{A}\left(D_{A}(M)\right)=M$ if everything was done correctly.

Properties

RSA Digital Signatures

Alice wishes to send a non-secret message M to Bob along with a signature S that authenticates her to Bob.

She sends (A, M, S) where

- A is her identity,
- M is the message,
- $S=M^{d_{A}}\left(\bmod n_{A}\right)$, where d_{A} is her RSA private key.

To verify S, Bob

- checks A and looks up Alice's RSA public key $\left(e_{A}, n_{A}\right)$,
- computes the "encryption" $S^{e_{A}} \equiv M^{\prime}\left(\bmod n_{A}\right)$,
- accepts the signature if and only if $M=M^{\prime}$

Signatures With Secrecy Using PKC

Alice wishes to send an authenticated secret message M to Bob.
She sends $\left(A, E_{B}(S, M)\right)$ where A and S are as before and E_{B} denotes encryption under Bob's public key.

To verify S, Bob decrypts $E_{B}(S, M)$ and then verifies S as before.

Security of Signatures

Existential Forgery on PKC-Generated Signatures

Definition 16 (Existential forgery)

A signature scheme is susceptible to existential forgery if an adversary can forge a valid signature of another entity for at least one message.

Goals of the attacker:

- total break - recover the private key
- universal forgery - can generate a signature for any message
- selective forgery - can generate a signature for some message of choice
- existential forgery - can generate a signature for at least one message

Digital Signatures Signatures via Public Key Cryptosystems

Preventing This Existential Forgery Attack

Solution:

- Alice sends $\left(A, M, S=D_{A}(H(M))\right)$ where H is a public pre-image resistant hash function on \mathcal{M}.
- Bob computes $E_{A}(S)$ and $H(M)$, and accepts the signature if and only if they match.

Foils the attack:

- If Eve generates random S, then she would have to find X such that $H(X)=M=E_{A}(S)$ (i.e. a pre-image under H), and send (A, X, S) to Bob.
- Bob then computes $D_{A}(H(X))$ and compares with S.
- Not computationally feasible if H is pre-image resistant.

Consider generating a signature S to a message M using a signature-capable PKC as described above.

Eve can create a forged signature from Alice as follows:
(1) Selects random $S \in \mathcal{M}$,
(2) Computes $M=E_{A}(S)$,
(0) Sends (A, M, S) to Bob.

Bob computes $E_{A}(S)$ which is M and thus accepts the "signature" S to "message" M.

Usually foiled by language redundancy, but may be a problem if M is random (eg. a cryptographic key).

If H is not collision resistant, Eve can forge a signature as follows:
(1) Find $M, M^{\prime} \in \mathcal{M}$ with $M \neq M^{\prime}$ and $H(M)=H\left(M^{\prime}\right)$ (a collision)
(2) If S is the signature to M, then S is also the signature to M^{\prime}, as $E_{A}(S)=H(M)=H\left(M^{\prime}\right)$

Note that if Eve intercepts (A, M, S), then she could also find a weak collision M^{\prime} with $H(M)=H\left(M^{\prime}\right)$.

Summary on Signatures via PKC

(1) Use a secure signature capable PKC and a cryptographic (i.e. preimage resistant and collision resistant) hash function H (security depends on both).
(2) Signing $H(M)$ instead of M also results in faster signature generation if M is long.
(3) H should be a fixed part of the signature protocol, so Eve cannot just substitute H with a cryptographically weak hash function

