
CPSC 418/MATH 318 Introduction to Cryptography
More on Digital Signatures, El Gamal Signature Scheme, Random

Number Generation, Authentication

Renate Scheidler

Department of Mathematics & Statistics
Department of Computer Science

University of Calgary

Week 11

Outline

1 Security of Signatures

2 ElGamal Signature Scheme

3 Cryptography in Real Life
Random Number Generation

4 Where are we at?

5 Authentication

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 11 1 / 31

Security of Signatures

Digital Signatures: Recap

Definition 1 (Digital signature)

A means for data origin authentication and non-repudiation that should
have two properties:

1 Only the sender can produce their signature.

2 Anyone should be easily able to verify the validity of the signature.

Property 1 provides authentication of the entity where the data originated
from.

Properties 1 & 2 provide non-repudiation (resolution of disputes).

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 11 2 / 31

Security of Signatures

Provable Security of Signatures

In practice, signature schemes must be resistant to active attacks. We
need the equivalent of IND-CCA2 for signatures.

Definition 2 (GMR-security)

A signature scheme is said to be GMR-secure if it is existentially
unforgeable by a computationally bounded adversary who can mount an
adaptive chosen-message attack.

In other words, an adversary who can obtain signatures of any messages of
her own choosing from the legitimate signer is unable to produce a valid
signature of any new message (for which she has not already requested
and obtained a signature) in polynomial time.

GMR stands for Goldwasser-Micali-Rivest.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 11 3 / 31



Security of Signatures

GMR-Secure Versions of RSA

Example 3

RSA-PSS (Probabilistic Signature Scheme), a digital signature analogue of
OAEP, is GMR-secure in the random oracle model (ROM) assuming that
the RSA problem (computing e-th roots modulo n) is hard.

Example 4

RSA with full-domain hash — use RSA signatures as usual, signing H(M),
but select the hash function H such that 0 ≤ H(M) < n (n is the RSA
modulus) for all messages M (see Section 8.5 of Stinson-Paterson).

Called full-domain because the messages signed are taken from the
entire range of possible RSA blocks as opposed to a smaller subrange.

Also GMR-secure under same assumption as above.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 11 4 / 31

ElGamal Signature Scheme

The El Gamal Signature Scheme

The El Gamal signature scheme is a variation of the El Gamal PKC (same
1985 paper). Security considerations are the same.

Alice produces her public and private keys as follows:

1 Selects a large prime p and a primitive root g of p.

2 Randomly selects x such that 0 < x < p − 1 and computes y ≡ g x

(mod p).

Public key: (p, g , y)
Private key: {x}

Alice also fixes a public cryptographic hash function H : {0, 1}∗ 7→ Zp−1.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 11 5 / 31

ElGamal Signature Scheme

Signing and Verifying

Alice signs a message M ∈ {0, 1}∗ as follows:

1 Selects a random integer k ∈ Z∗p−1.

2 Computes r ≡ gk (mod p), 0 ≤ r < p.

3 Solves ks ≡ H(M‖r)− xr (mod p − 1) for s ∈ Z∗p−1
4 Alice’s signature is the pair (r , s).

Bob verifies A’s signature (r , s) as follows:

1 Obtains Alice’s authentic public key (p, g , y).

2 Computes v1 ≡ y r r s (mod p) and v2 ≡ gH(M‖r) (mod p).

3 Accepts the signature if and only if r < p and v1 = v2.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 11 6 / 31

ElGamal Signature Scheme

Proof of Correctness for Verification

Proof of correctness.

Note that ks + rx = H(M‖r) + m(p − 1) for some integer m. If the
signature (r , s) to message M is valid, then

v1 ≡ y r r s

≡ (g x)r (gk)s

≡ g xr+ks

≡ gH(M‖r)+m(p−1)

≡ gH(M‖r)(gm)p−1

≡ v2 (mod p) ,

where we use that (gm)p−1 ≡ 1 (mod p) by Fermat’s Little Theorem.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 11 7 / 31



ElGamal Signature Scheme

Solving General Linear Congruences

For signature generation step 3, we need to solve the congruence

ks ≡ H(M‖r)− xr (mod p − 1) for s ∈ Z∗p−1 .

More generally, we want to solve a linear congruence of the form

aX ≡ b (mod m)

for X ∈ Z∗m, with m ∈ N, a ∈ Z∗m and b ∈ Zm.

We already saw how to do this for b = 1; that’s just finding modular
inverses.

To solve aX ≡ b (mod m) for X , first solve aZ ≡ 1 (mod m) for Z using
the Extended Euclidean Algorithm. Then X ≡ bZ (mod m) as

aX ≡ a(bZ ) ≡ (aZ )b ≡ 1 · b ≡ b (mod m) .

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 11 8 / 31

ElGamal Signature Scheme

ElGamal Example: Set-Up

Let p = 467, and set g = 2 which is a primitive root modulo 467.

Choose the secret key x = 127

Using binary exponentiation, one obtains y ≡ 2127 ≡ 132 (mod 467)

So consider an ElGamal user Alice with

public key (467, 2, 132)

private key {127}

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 11 9 / 31

ElGamal Signature Scheme

ElGamal Example: Signature Generation

Suppose Alice wishes to sign the message M = “Hi there”.

She selects k = 213; note that gcd(213, 466) = 1.

Binary exponentiation yields r ≡ 2213 ≡ 29 (mod 467).

Suppose our hash function yields H(“Hi there”‖29) = 100.

Alice needs to solve

213s ≡ 100− 127 · 29 ≡ 145 (mod 466) .

First solve 213z ≡ 1 (mod 466) for z using the Extended Euclidean
Algorithm, obtaining z ≡ 431 (mod 466).

Then s ≡ 145 · 431 ≡ 51 (mod 466).

The signature to “Hi there” is (r , s) = (29, 51).

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 11 10 / 31

ElGamal Signature Scheme

ElGamal Example: Signature Verification

To verify this signature, first note that r = 29 < 467. Then compute

v1 ≡ 13229 · 2951 ≡ 189 (mod 467)

and v2 ≡ 2100 ≡ 189 (mod 467). So v1 = v2 = 189.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 11 11 / 31



ElGamal Signature Scheme

Existential Forgery Against El Gamal Without Hashing M

Suppose the hash function in El Gamal is omitted:

Solve ks ≡ M − rx (mod p − 1) in step 3 of signature generation.

Verify that y r r s ≡ gM (mod p).

Then the following existential forgery attack is possible: put

r ≡ gy (mod p) , s = M = p − 1− r .

Then

y r r s ≡ y r (gy)p−1−r ≡ y r+p−1−rgp−1−r ≡ yp−1gM ≡ gM (mod p) .

This attack extends to many other values of r , s,M (see Stinson-Paterson
pp. 317f.)

Hashing M with a pre-image resistant hash function H foils this attack, as
finding a “message” M such that H(M) = p − 1− r requires finding a
pre-image of p − 1− r under H.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 11 12 / 31

ElGamal Signature Scheme

Universal Forgery Against El Gamal Without Hashing r

If H(M‖r) is replaced by H(M) in step 3 of the signature generation, then
a universal forgery attack is possible.

More exactly, if an attacker intercepts a signature (r , s) to a
message m, he can forge a signature (R, S) to an arbitrary
message M.

The resulting R satisfies 0 ≤ R ≤ p(p − 1).

This attack can be foiled by verifying that r < p and rejecting
signatures where r exceeds p. Better to include r in the hash though.

See Problem 7 of Assignment 3.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 11 13 / 31

ElGamal Signature Scheme

Re-Using Random Numbers in Signature Generation

Suppose the same value of k is used to sign two messages M1,M2.
Then k and the private key x can be recovered with high probability:

ks1 ≡ H(M1‖r)− xr (mod p − 1) ,

ks2 ≡ H(M2‖r)− xr (mod p − 1) ,

where r ≡ gk (mod p). Subtracting these two congruences yields

k(s1 − s2) ≡ H(M1‖r)− H(M2‖r) (mod p − 1) .

Can solve for k if gcd(s1 − s2, p − 1) = 1.

Can then solve xr ≡ H(M1‖r)− ks1 (mod p − 1) for x if
gcd(r , p − 1) = 1.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 11 14 / 31

ElGamal Signature Scheme

Security of ElGamal Signatures

El Gamal as presented (i.e. hashing both M and r) is GMR-secure in the
ROM assuming that H takes on random values and computing discrete
logarithms modulo p is hard.

Formally, one shows that the DLP reduces to existential forgery,
i.e. that an algorithm for producing existential forgeries can be used
to solve the DLP.

The public parameter g must be chosen verifiably at random (eg. publish
PRNG, seed, and algorithm used) in order to ensure that g is a primitive
root of p (applies to Diffie-Hellman and El Gamal cryptosystem as well;
analogous for RSA).

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 11 15 / 31



ElGamal Signature Scheme

Other DLP Based Signature Schemes

Digital Signature Algorithm (DSA) — variation of ElGamal with short
signatures, standardized by NIST in 1994 under the name Digital
Signature Standard (FIPS 186)

Feige-Fiat-Shamir — security based on computing square roots
modulo pq

Guillou-Quisquater — security based on the RSA problem (computing
e-th roots modulo pq)

A description of DSA can be found on the “handouts” page and in
Section 8.4.2 of Stinson-Paterson.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 11 16 / 31

Cryptography in Real Life

Crypto — From Drawing Board to Real Life

End User
Administration

Cryptographic Primitive

Implementation
Cryptographic Protocol

Most real-life problems happen at the top three levels.

We need to start thinking about practical cryptography!

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 11 17 / 31

Cryptography in Real Life Random Number Generation

Random Numbers in Cryptography

There are many uses of random numbers in cryptography:

keys for conventional cryptosystems

randomized schemes

public key generation

key stream for a stream cipher

One-time values (nonces) in authentication protocols to prevent replay

It is critical that these values be

statistically random — independent, uniform distribution

unpredictable — cannot infer future sequence on previous values)

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 11 18 / 31

Cryptography in Real Life Random Number Generation

How to Obtain Randomness?

The only source of true randomness is the real world.

Find a regular but random event and monitor. Examples:

radioactive radiation
radio noise (white noise)
thermal noise in diodes
leaky capacitors
mercury discharge tubes, etc.

Need special hardware in general (e.g. radiation counters)

Can be slow and cumbersome

Problems of bias or uneven distribution — have to compensate or use
noisiest bits from each sample). One possibility: pass data through a
cryptographically secure hash function.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 11 19 / 31



Cryptography in Real Life Random Number Generation

Pseudo-Randomness

Published collections of random numbers also exist, but they are too
limited and well-known for most uses.

In practice, one uses pseudo-randomness.

Definition 1 (Pseudorandom Number/Bit Generator (PRNG, PRBG))

An algorithmic technique to create sequences of statistically random
numbers/bits, initialized with a random seed.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 11 20 / 31

Cryptography in Real Life Random Number Generation

Example

Linear congruential generator:

Xi+1 = aXi + c (mod m) ,

where m is a positive integer (e.g. m = 231), a ∈ Z∗m and c ∈ Zm.

Advantage: outputs long statistically random sequences

Disadvantage: fails unpredictability — it is too easy to reconstruct
entire sequence given only a few values

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 11 21 / 31

Cryptography in Real Life Random Number Generation

Cryptographically Secure PRBGs

Definition 2 (Cryptographically secure PRBG (CSPRBG))

Must pass the next-bit test: there is no polynomial time algorithm that,
on input of the first k bits of an output sequence, can predict the
(k + 1)-st bit with probability significantly greater than 1/2.

For all practical purposes, a CSPRBG is unpredictable.

Remark: A PRBG is cryptographically secure if and only if it passes the
previous bit test: there is no polynomial time algorithm that, on input of
k bits of an output sequence can predict the preceding bit with probability
significantly greater than 1/2.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 11 22 / 31

Cryptography in Real Life Random Number Generation

More Examples of PRBGs

Simple Examples (see NIST SP-800-90)

Idea: output of a strong hash function or block cipher is statistically
random

Xi = H(Xi−1) where X0 is a random seed. Predictable, but good for
distilling random bits from another source (whitening).

Xi = EKm(C + 1) where Km is a protected master key and C is a
counter of some long period. Seems to be computationally infeasible
to predict next Xi if Km is secret.

More Complicated Example: Blum-Blum-Schub PRBG

Bit parity of {Xi}i≥0 where

Xi+1 ≡ X 2
i (mod n) , X0 ∈ Z∗n , n = pq .

Satisfies the next-bit test under the assumption that the QRP is
intractable.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 11 23 / 31



Cryptography in Real Life Random Number Generation

Common Mistakes with PRNGs

The security of a PRNG is determined by the entropy of its seed (which is
the bit length if the seed is random). So the seed must have sufficient
entropy to make the PRNG unpredictable.

The following are all real life (bad) examples!

1 Generating a random 512-bit prime using a 32-bit seed for the
random number generator. The entropy of the resulting prime is only
32 bits — easy to exhaustively try all possible seeds.

2 Generating a random 512-bit prime by calling a system PRNG that
produces 32-bit random numbers, padding with 0s to 512 bits, and
looking for the smallest prime greater than the number. This
approach also has only 32 bits of entropy.

3 Instead of padding with zeros, call the system PRNG once and
concatenate the resulting 32-bit random number 16 times to obtain a
512-bit number. This still has only 32 bits of entropy.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 11 24 / 31

Cryptography in Real Life Random Number Generation

Another Bad Example — Kerberos 4

Kerberos 4 generates DES session keys by using a PRNG, seeded with a
32-bit value, to produce two 32-bit random numbers.

Problem: only 32 bits of entropy (should be 56)

Bigger problem: seed is the XOR of 5 random 32-bit numbers:

time of day in seconds since Jan. 1, 1970

fractional part of the current time in microseconds

process ID of Kerberos server process

cumulative count of session keys produced so far

host id of the machine on which Kerberos is running

Entropy of each of these quantities: between 1 to 20 bits

Thus, Kerberos 4 seed has only 20 bits of entropy — it is easy to test all
220 possible values in seconds! (Better in Kerberos 5.)

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 11 25 / 31

Cryptography in Real Life Random Number Generation

Possible Fix to Kerberos 4

Compute a hash on the concatenation of the 5 values.

Every bit of randomness contributes to every bit of the session key

Successive applications of the hash function will produce further
pseudorandom bits (but with no more total entropy than the seed)

See the Internet Engineering Task Force’s (IETF) Request For Comments
RFC 1750 ”Randomness Recommendations for Security” for more
information about guidelines for deploying random number generators.
Section 6 covers recommendations for software-based strategies for
example.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 11 26 / 31

Cryptography in Real Life Random Number Generation

A Final Bad Example — Factoring RSA Moduli

1 Scrounge the internet for lots of RSA public keys with moduli
n1, n2, . . .

2 Compute gcd(ni , nj) for lots of i 6= j

You’d be surprised how many of the moduli you can factor!

Problem: too many people use the same primes, obtained via bad PRNGs.

So be sure to mind your p’s and q’s !

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 11 27 / 31



Cryptography in Real Life Random Number Generation

NIST Recommendations

Moral: The number of bits of entropy must correspond to the overall bit
security of the system.

Example: 3072-bit RSA provides 128 bits of security, so the seed material
for the PRNG must have at least 128 bits of entropy.

NIST’s Recommendations for Security levels (SP 800-57 part 1):

Security level (in bits) 80 112 128 192 256

Hash function size (in bits) 160 224 256 384 512

RSA modulus (in bits) 1024 2048 3072 8192 15360

Security level: key length for block cipher providing equivalent level of
difficulty to break

The first two security levels (80 and 112) are now considered insufficient.
Levels 3, 4 and 5 (128, 192, 256 bits, respectively) are considered secure.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 11 28 / 31

Where are we at?

Were are we at?

Recall cryptographic services:

Data confidentiality: discussed

Data integrity: discussed

Authentication: discussed, more next

Non-repudiation: discussed

Access Control: discussed a bit

Recall cryptographic mechanisms:

Encryption — for confidentiality and limited data integrity: discussed

Hash functions, Message Authentication Codes (MACs) — for data
integrity : discussed

Digital signatures — for data origin authentication and
non-repudiation: discussed

Authentication protocol — for entity authentication: next

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 11 29 / 31

Authentication

Authentication

Next topic: authentication in practice.

Today, authentication is arguably the most important application of
cryptography. Three main classifications:

Message authentication (MACs) — covered

Data-origin authentication (digital signatures) — covered previously

Authenticated key establishment — covered next

Entity authentication (client-server, user-host, process-host) —
covered after that

In practice, these are often combined into one protocol (e.g. SSL/TLS).

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 11 30 / 31

Authentication

Authenticity of Keys

Secure communication requires proper mechanisms for managing keys and
ensuring their authenticity.

Mechanisms for ensuring authenticity of keys:

A trusted third party

A key distribution center (session keys)
A certification authority (public keys)

Identity-based cryptography: your ID is your public key. A trusted
authority derives users’ private keys (and thus knows all private keys!)

Peer authentication via a web of trust that establish the authenticity
of the binding between a public key and its owner (Phil Zimmerman,
1992, used in PGP secure e-mail)

The vast majority of key distribution systems involve a trusted authority
to ensure authenticity of keys.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 11 31 / 31


	Security of Signatures
	ElGamal Signature Scheme
	Cryptography in Real Life
	Random Number Generation

	Where are we at?
	Authentication

