CPSC 418/MATH 318 IATEX Practice Document

Author name here
January 13, 2024

1 Introduction

Welcome to $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$!

2 Lists

You can create many types of lists:

2.1 Itemized

- Itemize element 1
- Itemize element 2
- Itemize element 3

2.2 Numbered

1. Enumerate item 1 normally (indexed with numbers)
2. Enumerate item 2
3. Enumerate item 3

2.3 Indexed with symbols of your choice

Use this only if really needed; in general, it is better to just leave the numbering style up to $\mathrm{A}^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$.

- Enumerate item 1 with a long dash
* Enumerate item 2 with an asterisk

Enumerate item 3 without a symbol

3 Tables

Here is a table, centered and with cell borders:

1	2	3
4	5	6

4 Math

Math mode inside text can be used by writing \$... \$ This creates inline math symbols and expressions; for example $v_{10}^{2}, v_{2}^{2}, v_{3}^{2}$.

Use $\backslash[\ldots \backslash]$ to display math, which places an equation centered on its own line as below:

$$
a \equiv c \quad(\bmod 20)
$$

To give an equation a number, use the equation environment and give the equation a \backslash label $\}$:

$$
\begin{equation*}
\binom{5}{2}=\frac{5(5-1)}{2}=10 \tag{1}
\end{equation*}
$$

To refer to Equation (1), use the \backslash eqref $\}$ command. Be sure to always label equations and reference them by their label.

The align environment allows formatting of equations that span multiple lines.

$$
\begin{align*}
\sum_{\substack{i=0 \\
i \text { is even }}}^{n} a_{i} & =\beta \alpha+\beta \alpha+\beta \alpha+\beta \alpha \tag{2}\\
& =4(\beta \alpha) \tag{3}\\
& =\gamma
\end{align*}
$$

Note how the last line is not numbered; this was done with \backslash nonumber. The align* environment also lines up multi-line equations in this way, but without numbers:

$$
\begin{aligned}
\left(x^{2}+x y+y^{2}\right)(x-y) & =\left(x^{2}+x y+y^{2}\right) x-\left(x^{2}+x y+y^{2}\right) y \\
& =\left(x^{3}+x^{2} y+x y^{2}\right)-\left(x^{2} y+x y^{2}+y^{3}\right) \\
& =x^{3}-y^{3}
\end{aligned}
$$

You may want to use blackboard font for sets of numbers such as $\mathbb{Z}, \mathbb{F}, \mathbb{R}$.
Many mathematical functions and notations, when preceded with a backslash, appear in the proper text mode (i.e. not in italics):

Correct	Incorrect
$\operatorname{deg}(f)$	$\operatorname{deg}(f)$
$\sin (x)$	$\sin (x)$
$\operatorname{det}(A)$	$\operatorname{det}(A)$

A very common mistake is to putsometextinmathmode. As you can see, this is very hard to read and considered very bad form. So always use the $\backslash \operatorname{text}\}$ command, like so:

$$
a_{i}>0 \text { for all } i \in \mathbb{N} \text {. }
$$

Some useful math symbols including the summation symbol can become quite large. You can adjust the size of brackets to make them look nicer:

$$
\left(\sum_{i=1}^{n} a_{i}\right) \quad \text { vs. } \quad\left(\sum_{i=1}^{n} a_{i}\right)
$$

Here is how you do arrays, with or without different types of brackets:

$$
\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array} \quad\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \quad\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

You can also create simple matrices with the bmatrix (for square brackets) or pmatrix (for parentheses) environments:

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \quad\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) .
$$

Unnumbered Sections

Note that we just started an unnumbered section here. This is done with the \section* command. This works for subsections as well.

Finally, the
 command let's you start a new page, like this:

5 Practice tasks

1. Create an itemized list of all your classes this semester.

- CPSC 418 Introduction to Cryptography
- CPSC 413 Design and Analysis of Algorithms I
- ...

2. Create a centered, bordered 4-column table with your courses this semester, containing the course number, course name, times and location:

Course number	Course name	Lecture times	Lecture location
MATH 318	Introduction to Cryptography	MWF 15:00-15:50	MFH 160
MATH 315	Algebra I	MWF 11:00-11:50	TRB 102
\ldots			

3. Typeset the binomial theorem, displayed:

$$
(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{n-i} y^{i}
$$

4. Typeset the Riemann zeta function, displayed and aligned in two lines, with an equation number on the last line only:

$$
\begin{align*}
\zeta(s) & =\sum_{n=1}^{\infty} \frac{1}{n^{s}} \\
& =\prod_{p} \frac{1}{1-p^{-s}} \tag{4}
\end{align*}
$$

Now reference it:
Equation (4) shows the Riemann zeta function.
5. Type a matrix with dots:

$$
A=\left(a_{i j}\right)_{1 \leq i, j \leq n}=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right] \in \operatorname{Mat}_{n}(\mathbb{R})
$$

6. Use the assignment template to practice further. Have fun!
