# **Computer Networks**

You will learn what is a network, how they work and what are the different types.

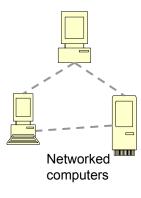
James Tan

#### What This Section Will And Will Not Cover

- What we will talk about:
  - The principles of how a network functions, the different parts of a network and the different types of networks
- What we won't talk about:
  - The step-by-step process of building a network
  - Typically you can find many sites that already provide this information
  - -E.g.,

 $\underline{http://www.microsoft.com/windowsxp/using/networking/setup/default.mspx}$ 

# What Is A Network


- 2+ computers
- The hardware and software needed to connect them



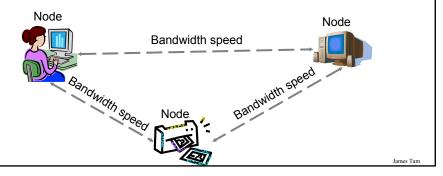
James Tam

# **Standalone Devices**

• Are not hooked up to the network






### **Introducing Some Basic Parts Of A Network**

#### • Nodes:

- Hardware devices that are connected to the network (e.g., printers, computers)

#### · Bandwidth:

- Speed at which information transmits through the network
- Maximum typically 10 100 Mbps



#### **Benefits Of Networking Computers**

- 1) Resource sharing
- 2) Reliability
- 3) Cost savings
- 4) Communication

### 1. Resource Sharing

- Non-networked computers
  - Information is stored separately and locally on each computer









branch

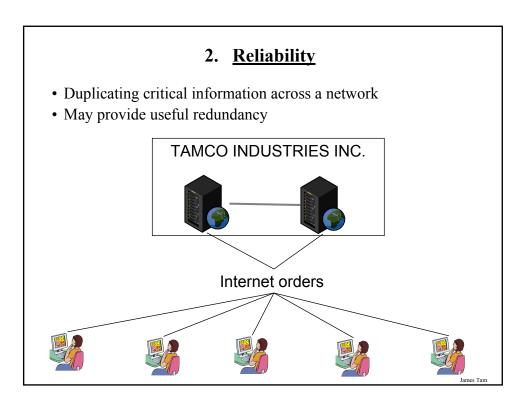
Iomac Tom

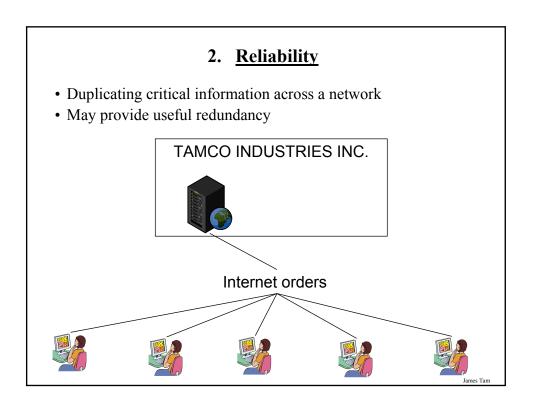
### 1. Resource Sharing

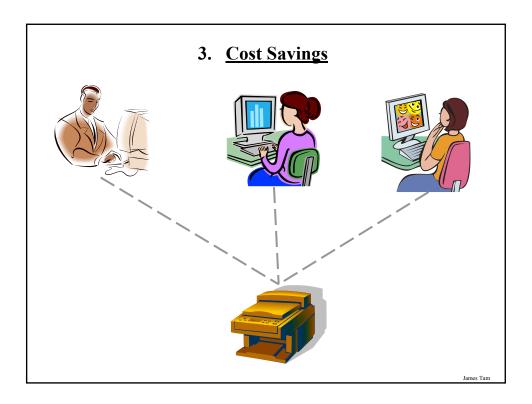
- Networked computer system
  - Information is accessible from other locations as if it were available locally.

Do not accept cheques from this person!




Calgary branch





Edmonton branch

Do not accept cheques from this person!









### 4. Communication

- Electronic communication may allow for faster responses.
- Electronic communication may provide benefits not derived from traditional methods of communication.

### What You Need For A Two Computer Network

• Two computers (obvious)





• A network interface card (NIC) for each computer



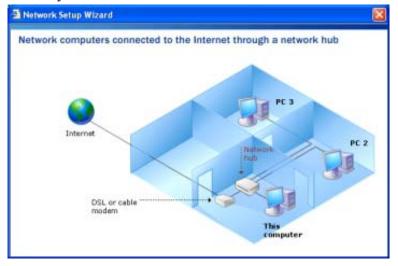


• Ethernet connection (or at least a cross over cable)



• Software to support the network connection

James Tan


#### What You Need For A Multi (3+) Computer Network

- The items mentioned for a 2 computer network
- Plus a network hub



#### <u>Hub</u>

• Brings all of the connections together and routes information internally



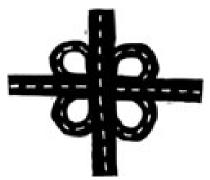
James Tar

### **Hub (2)**

- Rule of thumb when a hub is needed/appropriate:
  - Needed to route information in a network consisting of 2+ computers (strictly speaking not mandatory for a 2 computer network)
  - Works well for smaller networks or when there isn't a great deal of information passing through the network

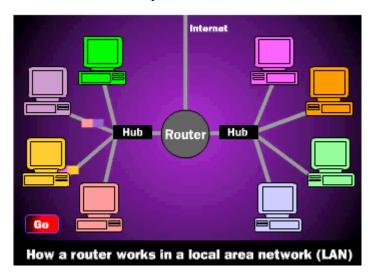
### **Hub (3)**




- Drawbacks of using network hubs:
  - Scalability
  - -Latency and collisions
  - Network failure

James Tan

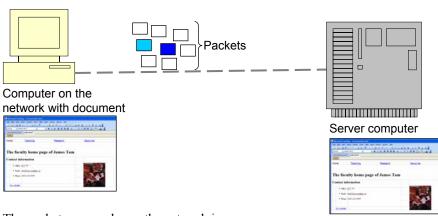
### **Switch**




- Similar to a hub it connects the computers in a network and routes information internally.
- They are employed to overcome some of the drawbacks of hubs:



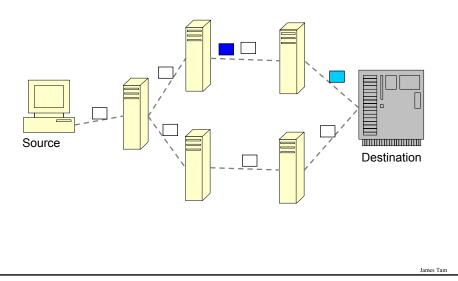
#### Router


• Used to connect multiple networks.



Iomas Tor

#### **Transmitting Information On A Network**


• Information is broken down into parts (packets).



- The packets are send over the network in groups
- When the packets reach their destination they are reassembled into their original forms.

# **Transmitting Information Over A Network (2)**

• The route taken can vary from packet-to-packet



### **Firewall**



- Protects the network against incoming information
- Some may screen outgoing data
- Filters information

#### **Network Sizes**

- Local Area Network (LAN)
  - May be located within a single building or campus
- Metropolitan Area Network (MAN)
  - A larger version of a LAN
  - May span several corporate offices or an entire city
- Wide Area Network (WAN)
  - May span a country or even a continent

James Tan

### **Types Of Network Connections**

- Wired
  - Twisted pair
  - Coaxial cable
  - Fiber optic
- Wireless

# **Twisted Pair Network Connections**

• The transmitting wire consists of a collection of paired wires



| Category    | Max bandwidth   |
|-------------|-----------------|
| Category 1  | < 1 Mbps        |
| Category 2  | 4 Mbps          |
| Category 3  | 10 Mbps         |
| Category 4  | 20 Mbps         |
| Category 5  | 100 Mbps        |
| Category 5E | 100 – 1000 Mbps |
| Category 6  | 1000 Mbps       |

James Tam

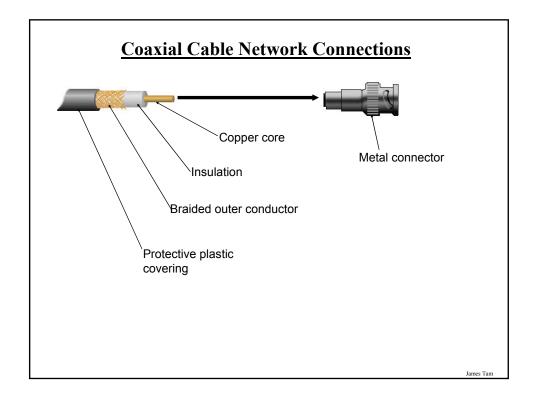
### **Twisted Pair Network Connections**

• The transmitting wire consists of a collection of paired wires



| Category    | Max bandwidth   |
|-------------|-----------------|
| Category 1  | < 1 Mbps        |
| Category 2  | 4 Mbps          |
| Category 3  | 10 Mbps         |
| Category 4  | 20 Mbps         |
| Category 5  | 100 Mbps        |
| Category 5E | 100 – 1000 Mbps |
| Category 6  | 1000 Mbps       |

### **Twisted Pair Network Connections (2)**


- The twisted pair connections can be shielded or not.
  - Unshielded (UTP)



- Shielded (STP)

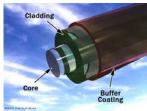


Iomos Ton



# **Coaxial Cable Network Connections (2)**

- Bandwidth
  - Typically at 10 Mbps
  - May reach 100 Mbps

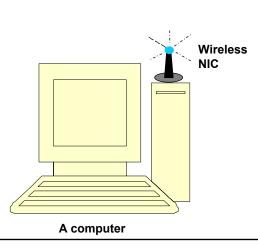

James Tan

### **Twisted Pair Vs. Coaxial Connections**

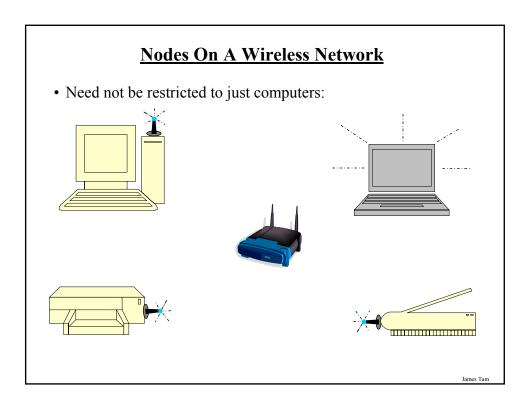
- Coaxial
  - -Longer range (~double)
  - Linear
- Twisted pair
  - Shorter range
  - Non-linear

#### **Fiber Optic Network Connections**

• Unlike twisted pair and coaxial connections which use electricity, fiber optic connections use light.




- Fast transmissions with few errors
- Very long range connections are possible
- Expensive


James Tan

#### **Wireless Network Connections**

- The network is connected via radio waves
- The general requirements for setting up a wireless network are similar but not identical to a wired network:







# **Types Of Wireless Network Connections**

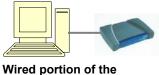
• All are based on the 802.11 standard for wireless transmissions

| Transmission protocol | Maximum bandwidth |
|-----------------------|-------------------|
| 802.11b               | 11 Mbps           |
| 802.11a               | 54 Mbps           |
| 802.11g               | 52 Mbps           |
| 802.11n               | ~100+ Mbps        |

James Tan

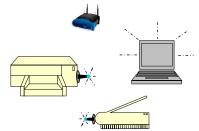
#### **Wired Vs. Wireless Networks**

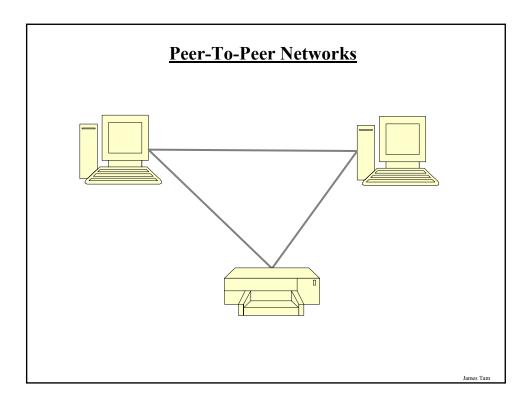
#### • Wired:


- -Speed
- Security
- Less likely to be subject to common sources of interference

#### • Wireless:

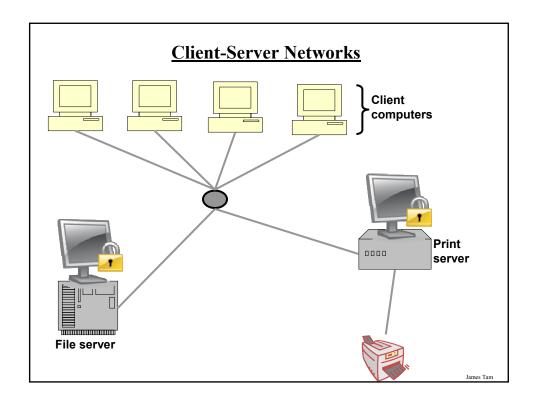
- Convenience


#### **Mixed Networks**


• To balance the strengths of wired networks vs. the strength of wireless networks a network can mix-and-match between wired and wireless connections.



network


#### Wireless portion of the network





# Peer-To-Peer Networks (2)

- The easiest type of network to set up
- The most common type of configuration for home networks



### **Client-Server Networks (2)**

- More complex than peer-to-peer but allows common network administrative tasks to be completed more efficiently.
- Typically used for larger networks.

#### You Should Now Know

- · What is a network
- What is required to set up a network
- · Common networking terminology
- What are different sizes of networks: LAN, MAN, WAN
- The hardware used in networks and how they work: hubs, switches, routers, firewalls
- How information is transmitted on a network via packets
- · What are different types of networks
  - Peer-to-peer and client-server
  - How is each one set up, how they differ and when and why are they used
- The different type of network connections
  - How does each one work
  - What are the maximum bandwidths
  - What are their strengths and weaknesses