
James Tam

Advanced Composite Types

You will learn in this section of notes
how to create single and generic
instances of non-homogeneous
composite types.

James Tam

What You Know

• How to create composite types (that are composed of other
types e.g., integers, real numbers, strings) which are
homogeneous.

Python implementation of this composite type: List
Typical implementation of this composite type in other
programming languages (e.g., ‘C’, “C++”, “Pascal”, “Java”): Array

James Tam

What You Will Learn

• How to create composite types that aren’t strictly
homogeneous (elements are all the same).

James Tam

The List Revisited

• This type of list that you have seen before is referred to as
an array:

Each element stores the same type of information.
(Usually) the size of each element is the same.
Examples:

—percentages = [0.0, 0.0, 0.0, 0.0, 0.0]
—letters = [‘A’, ‘A’, ‘A’]
—names = [“James Tam”, “Stacey Walls”, “Jamie Smyth”]

James Tam

The List Revisited (2)

• Problem: What if different types of information needs to be
tracked as a composite type?

Example, storing
information about a
client:
•First name

•Last name

•Phone number

•Address

•Postal code

•Email address

•Total purchases made

…series of characters

…series of characters

…numerical or character

…series of characters

…series of characters

…series of characters

…numerical or character

James Tam

The List Revisited (3)

• The array type employed by other programming languages
won’t work (each element must store the same type of
information)

• The list implementation used in Python provides more
features that a typical array.

• If just a few clients need to be tracked then a list can be
employed:

firstClient = ["James",
"Tam",
"(403)210-9455",
"ICT 707, 2500 University Dr NW",
"T2N-1N4",
"tamj@cpsc.ucalgary.ca",
0]

James Tam

The List Revisited (4)

• (Or as a small example)
def display (firstClient):
print "DISPLAYING CLIENT INFORMATION"

print "-----------------------------"
for i in range (0, 6, 1):

print firstClient [i]

MAIN
firstClient = ["James",

"Tam",
"(403)210-9455",
"ICT 707, 2500 University Dr NW",
"T2N-1N4",
"tamj@cpsc.ucalgary.ca",
0]

display (firstClient)

James Tam

The List Revisited (5)

• If only a few instances of the composite type (e.g., “Clients”) need to be
created then a list can be employed.

firstClient = ["James",
"Tam",
"(403)210-9455",
"ICT 707, 2500 University Dr NW",
"T2N-1N4",
"tamj@cpsc.ucalgary.ca",
0]

secondClient = ["Peter",
"Griffin",
"(708)123-4567",
"725 Spoon Street",
"NA",
"griffinp@familyguy.com",
100]

James Tam

Classes

• Can be used define a generic template for a new non-
homogeneous composite type.

• This template defines what an instance or example of this
new composite type would consist of but it doesn’t create
an instance.

James Tam

Defining A Class

• Format:
class <Name of the class>:

name of first field = <default value>
name of second field = <default value>

• Example:
class Client:

firstName = "default"
lastName = "default"
phone = "(123)456-7890"
address = "default address"
postalCode = "XXX-XXX"
email = "foo@bar.com"
purchases = 0

Describes what information
that would be tracked by a
“Client” but doesn’t actually
create a client in memory

James Tam

Creating An Instance Of A Class

• Format:
<variable name> = <name of class> ()

• Example:
firstClient = Client ()

James Tam

Defining A Class Vs. Creating An Instance Of That
Class

• Defining a class
A template that describes
that class: how many fields,
what type of information
will be stored by each field,
what default information
will be stored in a field.

• Creating a class
Examples of (instantiations)
of that class which can take
on different forms.

James Tam

Accessing And Changing The Fields

•Format:
<variable name>.<field name>

•Example:
The full version can be found in UNIX under
/home/courses/217/examples/composites/client.py

firstClient = Client ()
firstClient.firstName = "James"
firstClient.lastName = "Tam"
firstClient.email = "tamj@cpsc.ucalgary.ca"
print firstClient.firstName
print firstClient.lastName
print firstClient.phone
print firstClient.address
print firstClient.postalCode
print firstClient.email
print firstClient.purchases

James Tam

What Is The Benefit Of Defining A Class

• It allows new types of variables to be declared.
• The new type can model information about most any

arbitrary entity:
Car
Movie
Your pet
A biological entity in a simulation
A ‘critter’ a video game
An ‘object’ in a video game
Etc.

James Tam

What Is The Benefit Of Defining A Class (2)

• Unlike creating a composite type by using a list a predetermined
number of fields can be specified and those fields can be named.

class Client:
firstName = "default"
lastName = "default"
phone = "(123)456-7890"
address = "default address"
postalCode = "XXX-XXX"
email = "foo@bar.com"
purchases = 0

firstClient = Client ()
print firstClient.middleName

James Tam

What Is The Benefit Of Defining A Class (2)

• Unlike creating a composite type by using a list a predetermined
number of fields can be specified and those fields can be named.

class Client:
firstName = "default"
lastName = "default"
phone = "(123)456-7890"
address = "default address"
postalCode = "XXX-XXX"
email = "foo@bar.com"
purchases = 0

firstClient = Client ()
print firstClient.middleName There is no field by

this name

James Tam

You Should Now Know

•How a list can be used to store different types of information
(non-homogeneous composite type)

•How to define an arbitrary composite type using a class
•What are the benefits of defining a composite type by using
a class definition over using a list

•How to create instances of a class (instantiate)
•How to access and change the attributes or fields of a class

