

Recall: Computers Don't Do Decimal!

Most parts of the computer work in a discrete state:

- On/off
- True/false
- Yes/No

These two states can be modeled with the binary number system

James Tam

Decimal value	Binary value	Decimal value	Binary value	
0	0000	8	1000	
1	0001	9	1001	
2	0010	0 10	1010	
3	0011	11	1011	
4	0100	12	1100	
5	0101	13	1101	
6	0110	14	1110	
7	0111	15	1111	

Why Bother With Binary?

- 1. Representing information
 - ASCII (American Standard Code for Information Interchange)
 - Unicode
- 2. It's the language of the computer

1. <u>Representing Information: ASCII</u>

Uses 7 bits to represent characters

Max number of possibilities = $2^7 = 128$ characters that can be represented

e.g., 'A' is 65 in decimal or 01000001in binary. In memory it looks like this:

1. <u>Representing Information: ASCII (2)</u>

Decimal	Binary
0-31	00000000 - 00011111
32 – 47	00100000 - 00101111
48 - 57	00110000 - 00111001
58 - 64	00111010 - 01000000
65 - 90	01000001 - 01011010
91 – 96	01011011 - 01100000
97 – 122	01100001 - 01111010
123 – 127	01111011 - 01111111
	0 - 31 $32 - 47$ $48 - 57$ $58 - 64$ $65 - 90$ $91 - 96$ $97 - 122$

1. <u>Representing Information: Unicode</u>

Uses 16 bits (or more) to represent information

Max number of possibilities = 2^{16} = 65536 characters that can be represented (more if more bits are used)

Machine	Octal	
language	value	
1010111000000	012700	
1001010000101	011205	

<u>Octal</u>

Base eight

Employs eight unique symbols (0 - 7)

Largest decimal value that can be represented by 1 octal digit = 7 = base(8) - 1

Decimal value	Octal value	Decimal value	Octal value
)	0	8	10
	1	9	11
2	2	10	12
3	3	11	13
4	4	12	14
5	5	13	15
	6	14	16
,	7	15	17

Problems With Binary: Got Worse As Computers Got More Powerful

1001 0100 1000 0000 1100 0100 0110 1010?

Or

1001 0100 1000 0000 1100 0100 0110 1011?

James Tam

<u>Hexadecimal: An Even More Compact Way Of</u> <u>Representing Binary Instructions</u>					
Hexadecimal					
value					
14C1					
60E0					
	Hexadecimal value 14C1				

Example from 68000 Family Assembly Language by Clements A.

Hexadecimal (Hex)

Base sixteen

Employs sixteen unique symbols (0 - 9, followed by A - F)

Largest decimal value that can be represented by 1 hex digit = 15

Decimal value	Hexadecimal value			
0	0	9	9	
1	1	10	Α	
2	2	11	В	
3	3	12	С	
4	4	13	D	
5	5	14	Е	
6	6	15	F	
7	7	16	10	
8	8	17	11	

Decimal	Binary	Octal	Hex	Decimal	Binary	Octal	Hex
0	0000	0	0	8	1000	10	8
1	0001	1	1	9	1001	11	9
2	0010	2	2	10	1010	12	A
3	0011	3	3	11	1011	13	B
4	0100	4	4	12	1100	14	C
5	0101	5	5	13	1101	15	D
6	0110	6	6	14	1110	16	E
7	0111	7	7	15	1111	17	F

Arbitrary Number Bases

Base N

Employs N unique symbols

Largest decimal value that can be represented by 1 digit = Base (N) - 1

Converting Between Different Number Systems

Binary to/from octal

Binary to/from hexadecimal

Octal to/from hexadecimal

Decimal to any base

Any base to decimal

<section-header><section-header><section-header><section-header>

James Tan

Octal To Binary

1 octal digit equals = 3 binary digits

Split into groups of three starting at the decimal •For the integer portion start splitting at the decimal and go left •For the fractional portion start splitting at the decimal and go right

e.g. $125_{8} = ???_{2}$ 001 010 .1012

Hexadecimal To Binary

1 hex digit equals = 4 binary digits

Split into groups of four starting at the decimal

- For the integer portion start splitting at the decimal and go left
- For the fractional portion start splitting at the decimal and go right

e.g.,
$$A3_{16} = ???_2$$

James Tan

Decimal To Any Base Split up the integer and the fractional portions 1) For the integer portion: a. Divide the integer portion of the decimal number by the target base. b. The remainder becomes the first integer digit of the number (immediately left of the decimal) in the target base. c. The quotient becomes the new integer value. d. Divide the new integer value by the target base. e. The new remainder becomes the second integer digit of the converted number (second digit to the left of the decimal). f. Continue dividing until the quotient is less than the target base and this quotient becomes the last integer digit of the converted number.

<u>Converting From A Number In Any Base To</u> <u>Decimal</u>

Evaluate the expression: the base raised to some exponent₁, multiply the resulting expression by the corresponding digit and sum the resulting products.

Example:

Position of digits (superscript) 1 1. $0 \stackrel{\frown}{=}$ Number to be converted Value in decimal = $(1x2^1) + (1x2^0) + (0x2^{-1}) = (1x2) + (1x1) + 0 = 3$ General formula: 3 2 1 0 -1 -2 -3 \leftarrow Position of digits d7 d6 d5 d4. d3 d2 d1 $\stackrel{\leftarrow}{=}$ Number to be converted

Value in decimal = $(digit7*b^3) + (digit6*b^2) + (digit5*b^1) + (digit4*b^0) + (digit3*b^{-1}) + (digit2*b^{-2}) + (digit1*b^{-3})$

James Tam

1 The value of this exponent will be determined by the position of the digit (superscript)

Overflow: A Real World Example

You can only represent a finite number of values

James Tam

Overflow: Binary Occurs when you don't have enough bits to represent a value ("wraps around" to zero) Binary Binary Value Value Binary Value (1 bit) (2 bits) (3 bits) : : : : : James Tam

