

<u>Complementing Binary Using The Ones</u> <u>Complement Representation</u>

For positive values there is no difference (no change is needed)
e.g., positive seven (The 'A' in the expression A – B)

0111 (regular binary)

0111 (Ones complement equivalent)

• For negative values complement the number by negating the binary values: reversing (flipping) the bits (i.e., a 0 becomes 1 and 1 becomes 0).

e.g., minus six (The 'B' in the expression A – B becomes A+(-B))
 -0110 (regular binary)

1001 (Ones complement equivalent)

<u>Complementing Binary Using The Twos</u> <u>Complement Representation</u>

• For positive values there is no difference (no change is needed)

e.g., positive seven (The 'A' in the expression A – B)
 0111 (regular binary)

0111 (Twos complement equivalent)

• For negative values complement the number by negating the number: reversing (flipping) the bits (i.e., a 0 becomes 1 and 1 becomes 0) *and adding one to the result*.

e.g., minus six (The 'B' in the expression A – B becomes A+(-B))
 -0110 (regular binary)

James Tan

1010 (Twos complement equivalent)

Interpreting The Bit Pattern: Complements

- Recall:
 - Positive values remain unchanged:
 0110 is the same value with all three representations.
 - Negative values are converted through complementing:
 - Ones complement: negate the bits
 -0110 becomes 1001
 - Twos complement: negate the bits and add one -0110 becomes 1010
- Problem: the sign must be retained (complements don't use a minus sign).
- Approach:
 - One bit (most significant bit/MSB or the signed bit) is used to indicate the sign of the number.
 - This bit cannot be used to represent the magnitude of the number
 - If the MSB equals 0, then the number is positive
 - e.g. 0 bbb is a positive number (bbb stands for a binary number)If the MSB equals 1, then the number is negative
 - e.g. 1 bbb is a negative number (bbb stands for a binary number)

James Tam

Summary Of The Three Binary Representations

	Positive values are represented with:	Negative values are represented with:
Regular binary	No explicit symbol is needed (rarely is a plus '+' used) e.g., 100 vs. +100	A minus '-' sign e.g., -100
Ones complement	The sign bit (MSB) is zero e.g., 0 11	The sign bit (MSB) is one e.g., 100
Twos complement	The sign bit (MSB) is zero e.g., 0 11	The sign bit (MSB) is one e.g., 100

Bit pattern	Regular binary	Ones complement	Twos complement
0000	0	0	0
0001	1	1	1
0010	2	2	2
0011	3	3	3
0100	4	4	4
0101	5	5	5
0110	6	6	6
0111	7	7	7
1000	8	-7	-8
1001	9	-6	-7
1010	10	-5	-6
1011	11	-4	-5
1100	12	-3	-4
1101	13	-2	-3
1110	14	-1	-2
1111	15	-0	-1

What You Already Should Know

- How to convert from decimal to binary.
- How to convert from binary to decimal.

What You Will Learn

• How to subtract numbers with the complement and add technique:

The operation A - B is performed as A + (-B)

Binary Subtraction Through Ones Complements

- 1) Convert from regular binary to a 1's complement representation (check if it is preceded by a minus sign).
 - a. If the number is not preceded by a minus sign, it's positive (leave it alone).
 - b. If the number is preceded by a minus sign, the number is negative (complement it by flipping the bits) and remove the minus sign.
- 2) Add the two binary numbers.
- 3) Check if there is overflow (a bit is carried out) and if so add it back.
- 4) Convert the 1's complement value back to regular binary (check the value of the MSB).
 - a. If the MSB = 0, the number is positive (leave it alone)
 - b. If the MSB = 1, the number is negative (complement it by flipping the bits) and precede the number with a minus sign

Binary Subtraction Through Twos Complements

- 1) Convert from regular binary to a 2's complement representation (check if it's preceded by a minus sign).
 - a. If the number is not preceded by a minus sign, it's positive (leave it alone).
 - b. If the number is preceded by a minus sign, the number is negative (complement it and discard the minus sign).
 - i. Flip the bits.
 - ii. Add one to the result.
- 2) Add the two binary numbers.
- 3) Check if there is overflow (a bit is carried out) and if so discard it.
- 4) Convert the 2's complement value back to regular binary (check the value of the MSB).
 - a. If the MSB = 0, the number is positive (leave it alone).
 - b. If the MSB = 1, the number is negative (complement it and precede the number with a negative sign).
 - i. Flip the bits.
 - ii. Add one to the result.

