
Introduction to problem solving

James Tam

Introduction To Problem Solving

This section will focus on
problem solving strategies.

James Tam

What Is Computer Science?

•Computer Science is about problem solving

Graphics

Interactive displays

Robotics:
acceptance of
domesticated
robots

Artificial Intelligence
FIFA © Electronic Arts.

Introduction to problem solving

James Tam

Computer Science Is Not The Same As Computer
Programming

•Computer Science does require the creation of computer
programs (‘programming’) but goes beyond that.

Computer Science

Programming

James Tam

Computer Science Vs. Computer Programming

•Computer programming
- The focus on how to do different things with a given programming
language

•Computer science
- Learning computer programming is a necessary part of computer science
- But it also includes extensive details about how a computer program works
(not just how to write one in a given language).

- Also problem solving and reasoning skills must be developed and applied.

Introduction to problem solving

James Tam

Problems Vs. Solutions

•Problem
- Specifies ‘what’ needs to be accomplished.
- Includes a description of inputs and outputs.

•Solution
- The way in which the problem is solved (the specific steps that specifies
‘how’ the inputs are converted into outputs).

- Algorithm: the name of a solution in Computer Science.

James Tam

More On Problem Solving

•The process of problem solving is the development of an
algorithm that fulfills the requirements of a problem).

•Typically there will multiple algorithms that could solve the
problem.
- Some solutions could be better than others (depending upon the criterion
used).

•This means that there isn’t a fixed series of steps that can be
followed in order to solve the problem (the person who solves
the problem – in this course it will be YOU – must come up
with the algorithm).

Introduction to problem solving

James Tam

Practice Examples For Working Out Problems

•Average running times
•Robotic movements

James Tam

Simple Problem: Average Running Times

•Running times are typically recorded in minutes and seconds.
•Problem: Find a way to allow for an easier calculation of an
average running time.

•Inputs: Time in minutes and the time in seconds.
•Output: A running time using one time unit.
•Solution: Derive an algorithm that will convert the composite
time in minutes and in seconds to a single value in minutes so
an average can be determined.

Introduction to problem solving

James Tam

Another Problem: Robotic Movement1

•Develop an algorithm for a simple robot (similar in movement
capabilities to a RoombaTM).

•Movement:
- The robot can move forward one distance unit (a ‘square’).

•Rotation:
- If forward motion is not possible then the robot can rotate left or right by
90 degrees.

•Short range sensors:
- One is mounted forwards, the other is mounted on the right.
- The sensors check for obstacles in the next square.

1 From “Peeking into Computer Science” and the lecture notes of Jalal Kawash

James Tam

Specifying The Problem

•What does the robot need to do:
- Find a wall/obstacle.
- Hug the wall, indefinitely moving forward.

•Input:
- Whatever is detected by the sensors (front, right).

•Output:
- The robot’s movement

Introduction to problem solving

James Tam

The Contents Of The Robot’s World

•Since the robot can either move onto a square that’s empty or
avoid a square that is occupied, the world can be simplified into
two cases:
- The destination square is empty: ‘space’.
- The destination square is not empty: ‘wall’ (contains a wall, furniture,
person, pet etc.)
•Details about exactly why the destination isn’t empty isn’t important so simplify
the problem.

James Tam

Inputs/Outputs Based On The World

ROBOT

FS = W or FS = S

RS = W or RS = S

Forward, Rotate (R), Rotate (L)

Introduction to problem solving

James Tam

Robot’s Orientation

UP

DOWN

LEFT RIGHT

James Tam

Robot: Moving Forward

Introduction to problem solving

James Tam

Robot: Rotations

Left 90○ Right 90○

James Tam

Solution: The Generic Algorithm For Movement

•Search for the wall
•Once found, keep it to the robot’s right
•Move forward

- Each move, make sure the wall is still to the robot’s right.
- (This means there should be a space in front and the wall to the right).

•Robot’s modes:
- Search for the wall
- Hug the wall

Introduction to problem solving

James Tam

Algorithm: Search For The Wall

Repeat the following steps, until this phase is done (wall found,
change to the wall hugging mode)
•If RS = W, then done this phase

- Right sensor detects a wall

•If FS = W, then L, done this phase
- Front sensor detects a wall, rotate left

•If FS = S, then F
- Right sensor senses a space, take a step forward

James Tam

Algorithm: Hug The Wall

•Need to make sure that the wall is not “lost” during movement.
•Complexity: all cases must be considered.

Introduction to problem solving

James Tam

Hug The Wall: Case 1

R

Input
RS = W
FS = S

James Tam

Hug The Wall: Case 1

R
Output
Movement: forward

Introduction to problem solving

James Tam

Hug The Wall: Case 2

Input
FS = W

R

James Tam

Hug The Wall: Case 2

Output
Rotate: leftR

Introduction to problem solving

James Tam

Hug The Wall: Case 3

R

Input
FS = W

James Tam

Hug The Wall: Case 3

R

Output
Rotate: Left

Introduction to problem solving

James Tam

Hug The Wall: Case 3

R

Input
FS = W

James Tam

Hug The Wall: Case 3

R Output
Rotate: Left

Introduction to problem solving

James Tam

Hug The Wall: Case 3

R

Input
FS = W

James Tam

Hug The Wall: Case 3

R

Output
Rotate left

Introduction to problem solving

James Tam

Hug The Wall: Case 3

R

Input
FS = W

James Tam

Hug The Wall: Case 3

R Output
Rotate left

Introduction to problem solving

James Tam

Hug The Wall: Case 3

R Input
FS = W

James Tam

Hug The Wall: Case 3

R Output
Rotate left

http://adorablay.wordpress.com/

Introduction to problem solving

James Tam

Hug The Wall: Case 4

R

Input
FS = S
RS = W

James Tam

Hug The Wall: Case 4

R

Output
Movement:
Forward

Introduction to problem solving

James Tam

Hug The Wall: Case 4

R

Input
FS = S
RS = S

James Tam

Hug The Wall: Case 4
R

Output (Step 1)
Rotate: right

Introduction to problem solving

James Tam

Hug The Wall: Case 4

R

Output (Step 2):
Movement:
forward

James Tam

Hug The Wall: Case 4

R

Input:
FS = S
RS = W

Introduction to problem solving

James Tam

Hug The Wall: Case 4

R

Output:
Movement:
forward

James Tam

Hug The Wall: Case 4

R

Input:
FS = S
RS = S

Introduction to problem solving

James Tam

Hug The Wall: Case 4

R

Output (step 1):
Rotate: right

James Tam

Hug The Wall: Case 4

R

Output (step 2):
Movement: foward

Introduction to problem solving

James Tam

Algorithm: Hug The Wall

Repeat the following steps:
1. If RS = W and FS = S, then F
2. If FS = W, then L
3. If RS = S and FS = S, then R and F

James Tam

How To Develop Solutions For Tougher Problems

1. Try to solve specific examples and from those cases
extrapolate the general algorithm.

2. If there is a physical analogy: Specify the scenario in concrete
terms to help you visualize what you’re facing.
o This doesn’t necessarily involve a text description but could include

something more physical or visual.
o Note: this approach can also be used to help clarify the problem that

you face.

Diablo © Blizzard

Introduction to problem solving

James Tam

First Problem: Change Calculator

•(Paraphrased from the book “Pascal: An introduction to the Art
and Science of Programming” by Walter J. Savitch.

Problem statement:

Write the algorithm to make change. Given an amount of money, the
program will indicate how many quarters, dimes and pennies are needed.
The cashier is able to determine the change needed for values of a dollar
or less.

James Tam

Second Problem: Simple Path Finding

•Path finding is a common problem in many programs.
•Examples:

- Websites that give directions from one location to anther e.g., MapQuest,
Google Maps etc.

- For games with rudimentary artificial intelligence and given two locations
on a map, the game will plot a path from one location to another e.g., chase
algorithms for computer controlled opponents, moving armies/fleets in
strategy games, controlling multiple characters in RPG’s.

The
‘Fellowship’:
human
controlled

The ‘Balrog’:
computer
controlled

The exit

Introduction to problem solving

James Tam

Solving Large Problems

•Structure the problem so it becomes manageable.
•This can be done by abstracting (simplifying the problem).
•One approach to abstracting is to hide details that aren’t
immediately necessary or focusing on details that are more
important.
- Example: The robot example, either the destination was empty or it wasn’t
(the exact contents aren’t important).

•Later the other details may be deal with as needed/possible.
•A commonly used approach is the top-down method.
•Start with a general approach to the problem (the “top”).
•Decompose that approach into smaller portions (moving
‘down’).

James Tam

Solving Large Problems (2)

•Continue decomposing the problem into smaller and smaller
parts until each part alone is manageable and can be solved.

•The solution to each part is an algorithm.

Introduction to problem solving

James Tam

Top Down Design

1. Start by outlining the major parts (structure)

2. Then implement the solution for each part

My autobiography

Chapter 1:
The humble beginnings

Chapter 2:
My rise to greatness

… Chapter 7:
The end of an era

Chapter 1: The humble beginnings

It all started ten and one score years ago
with a log-shaped computer workstation…

James Tam

Levels Of Abstraction

•The appropriate level of detail will depend upon the person and
what they need to accomplish.

•Example a vehicle:
- To a passenger

- To the typical driver

- To a mechanic or hard-core enthusiast

A B

Introduction to problem solving

James Tam

You Should Now Know

•Computer Science is about problem solving
•How Computer Science differs from computer programming
•What is the definition of a problem
•What is the definition of a solution/algorithm
•How to work out the details of a problem of moderate difficulty
•Some techniques for solving challenging problems
•How to manage the complexity of larger problems through
abstraction and top down decomposition

