
CPSC 219: Introduction to Java programming

James Tam

Introduction To Java Programming

You will study the process of creating
Java programs and constructs for
input, output, branching, looping,

working with arrays as well some of
the history behind Java’s

development.

James Tam

Java: History

•Computers of the past

CPSC 219: Introduction to Java programming

James Tam

Java: History (2)

•The invention of the microprocessor revolutionized computers

Intel microprocessor

Commodore Pet microcomputer

James Tam

Java: History (3)

•It was believed that the logical next step for microprocessors
was to have them run intelligent consumer electronics

CPSC 219: Introduction to Java programming

James Tam

Java History (4)

•Sun Microsystems funded an internal research project “Green”
to investigate this opportunity.

- Result: A programming language called “Oak”

Blatant advertisement: James Gosling was a
graduate of the U of C Computer Science
program.

Wav file from “The Simpsons” © Fox, Image from the website of Sun Microsystems

James Tam

Java History (5)

- Problem: There was already a programming language called Oak.
- The “Green” team met at a local coffee shop to come up with

another name...
•Java!

CPSC 219: Introduction to Java programming

James Tam

Java: History (6)

•The concept of intelligent devices didn’t catch
on.

•Project Green and work on the Java language
was nearly canceled.

James Tam

Java: History (7)

•The popularity of the Internet resulted in Sun’s re-focusing of
Java on computers.

•Prior to the advent of Java, web pages allowed you to download
only text and images.

Your computer at home
running a web browser

User clicks on a link

Images and text get
downloaded

Server containing a
web page

CPSC 219: Introduction to Java programming

James Tam

Your computer at home
running a web browser

Server containing
a web page

Java: History (8)

•Java enabled web browsers allowed for the downloading of
programs (Applets).

•Java is still used in this context today:
- Facebook
- Hotmail

User clicks on a link

Java Applet downloaded

Java version of the Game of Life: http://www.bitstorm.org/gameoflife/

Online checkers: http://www.darkfish.com/checkers/index.html

James Tam

Java: Write Once, Run Anywhere

•Consequence of Java’s history:
platform-independence

Mac user running Netscape

Windows user running Internet Explorer

Web page stored on Unix server

Click on link to Applet

Byte code is downloaded

Virtual machine translates byte code to

native Mac code and the Applet is run

Byte code
(part of web
page)

CPSC 219: Introduction to Java programming

James Tam

Java: Write Once, Run Anywhere

•Consequence of Java’s history:
platform-independent

Mac user running Netscape

Windows user running Internet Explorer

Web page stored on Unix server

Click on link to Applet
Byte code is downloaded

Virtual machine translates byte code to

native Windows code and the Applet is run

James Tam

Java: Write Once, Run Anywhere (2)

•But Java can also create standard (non-web based) programs

Dungeon Master (Java version)

http://www.cs.pitt.edu/~alandale/dmjava/

CPSC 219: Introduction to Java programming

James Tam

Java: Write Once, Run Anywhere (3)

•Java has been used by large and reputable companies to create
serious stand-alone applications.

•Example:
- Eclipse1: started as a programming environment created by IBM for
developing Java programs. The program Eclipse was itself written in Java.

1 For more information: http://www.eclipse.org/downloads/

James Tam

Compiled Programs With Different
Operating Systems

Windows
compiler

Executable (Windows)

UNIX
compiler

Executable (UNIX)

Mac OS
compiler

Executable (Mac)

Computer
program

CPSC 219: Introduction to Java programming

James Tam

A High Level View Of Translating/Executing Java
Programs

Java compiler
(javac)

Java program

Filename.java

Java
bytecode
(generic
binary)

Filename.class

James Tam

A High Level View Of Translating/Executing Java
Programs (2)

Java interpreter
(java)

Java
bytecode
(generic
binary)

Filename.class

Machine language
instruction (UNIX)

Machine language
instruction (Windows)

Machine language
instruction (MAC)

CPSC 219: Introduction to Java programming

James Tam

Which Java?

•Java 6 JDK (Java Development Kit), Standard Edition includes:
- JDK (Java development kit) – for developing Java software (creating

Java programs.
- JRE (Java Runtime environment) – only good for running pre-created

Java programs.
•Java Plug-in – a special version of the JRE designed to run through web
browsers.

http://java.sun.com/javase/downloads/index.jsp

James Tam

Smallest Compilable And Executable Java Program

public class Smallest
{

public static void main (String[] args)
{
}

}

CPSC 219: Introduction to Java programming

James Tam

Creating, Compiling And Running Java Programs
On The Computer Science Network

javac

Java compiler

Java byte code
filename.class

(UNIX file)To compile the program at the
command line type "javac
filename.java"

To run the interpreter, at
the command line type
"java filename"

java

Java Interpreter

Type it in with the text editor of your choice

filename.java

(Unix file)

Java program

James Tam

Compiling The Smallest Java Program

public class Smallest
{

public static void main (String[] args)
{
}

}

Smallest.java

javac

(Java byte code)
10000100000001000
00100100000001001

: :

Smallest.class

Type “javac
Smallest.java”

CPSC 219: Introduction to Java programming

James Tam

Running The Smallest Java Program

(Java byte code)
10000100000001000
00100100000001001

: :

Smallest.class

java

Type “java Smallest”

James Tam

Documentation / Comments

Java
•Multi-line documentation

/* Start of documentation
*/ End of documentation

•Documentation for a single line
//Everything until the end of the line is a comment

CPSC 219: Introduction to Java programming

James Tam

Java Output

•Format:
System.out.println(<string or variable name one> + <string or variable
name two>..);

•Examples (Assumes a variable called ‘num’ has been declared.):
System.out.println("Good-night gracie!");
System.out.print(num);
System.out.println("num=" +num);

James Tam

Output : Some Escape Sequences For Formatting

Horizontal tab\t

Carriage return\r

Backslash\\

Double quote\”

New line\n

DescriptionEscape sequence

CPSC 219: Introduction to Java programming

James Tam

Declaring Variables

•Format:
- It’s the same structure that’s used with ‘C’ variables.

James Tam

Some Built-In Types Of Variables In Java

DescriptionType

A sequence of characters between double
quotes (“”)

String

1 bit true or false valueboolean

16 bit Unicode characterchar

64 bit signed real numberdouble

32 bit signed real numberfloat

64 bit signed integerlong

32 bit signed integerint

16 but signed integershort

8 bit signed integerbyte

CPSC 219: Introduction to Java programming

James Tam

Location Of Variable Declarations

public class <name of class>
{

public static void main (String[] args)
{

// Local variable declarations occur here

<< Program statements >>
: :

}
}

James Tam

Java Constants

Format:
final <constant type> <CONSTANT NAME> = <value>;

Example:
final int SIZE = 100;

CPSC 219: Introduction to Java programming

James Tam

Location Of Constant Declarations

public class <name of class>
{

public static void main (String[] args)
{

// Local constant declarations occur here
// Local variable declarations

< Program statements >>
: :

}
}

James Tam

Java Keywords

whilevolatilevoidtrytransient

throwsthrowthissynchronizedswitchsuperstatic

shortreturnpublicprotectedprivatepackagenew

nativelonginterfaceintinstanceofimportimplements

ifgotoforfloatfinallyfinalextends

elsedoubledodefaultcontinueconstclass

charcatchcasebytebreakbooleanabstract

CPSC 219: Introduction to Java programming

James Tam

Common Java Operators / Operator Precedence

Right to leftPost-increment
Post-decrement

expression++
expression--

1

Right to leftPre-increment
Pre-decrement
Unary plus
Unary minus
Logical negation
Bitwise complement
Cast

++expression
--expression
+
-
!
~
(type)

2

Precedence
level

AssociativityDescriptionOperator

James Tam

Common Java Operators / Operator Precedence

Left to rightAddition or String
concatenation
Subtraction

+

-

4

Left to rightLeft bitwise shift
Right bitwise shift

<<
>>

5

Left to rightMultiplication
Division
Remainder/modulus

*
/
%

3

Precedence
level

AssociativityDescriptionOperator

CPSC 219: Introduction to Java programming

James Tam

Common Java Operators / Operator Precedence

Left to rightBitwise AND&8

Left to rightBitwise exclusive OR^9

Left to rightEqual to
Not equal to

= =
!=

7

Left to rightLess than
Less than, equal to
Greater than
Greater than, equal to

<
<=
>
>=

6

Precedence
level

AssociativityDescriptionOperator

James Tam

Common Java Operators / Operator Precedence

Left to rightLogical OR||12

Left to rightLogical AND&&11

Left to rightBitwise OR|10

Precedence
level

AssociativityDescriptionOperator

CPSC 219: Introduction to Java programming

James Tam

Common Java Operators / Operator Precedence

Right to leftAssignment
Add, assignment
Subtract, assignment
Multiply, assignment
Division, assignment
Remainder, assignment
Bitwise AND, assignment
Bitwise XOR, assignment
Bitwise OR, assignment
Left shift, assignment
Right shift, assignment

=
+=
-=
*=
/=
%=
&=
^=
|=
<<=
>>=

13

Precedence
level

AssociativityDescriptionOperator

James Tam

Post/Pre Operators

public class Example1
{

public static void main (String [] args)
{

int num = 5;
System.out.println(num);
num++;
System.out.println(num);
++num;
System.out.println(num);
System.out.println(++num);
System.out.println(num++);

}
}

CPSC 219: Introduction to Java programming

James Tam

Getting Text Input

•You can use the pre-written methods (functions) in the Scanner
class.

•General structure:
import java.util.Scanner;

main (String [] args)
{

Scanner <name of scanner> = new Scanner (System.in);
<variable> = <name of scanner> .<method> ();

}

James Tam

Getting Text Input (2)

•Example:
import java.util.Scanner;

public class MyInput
{

public static void main (String [] args)
{

String str1;
int num1;
char ch;
Scanner in = new Scanner (System.in);
System.out.print ("Type in an integer: ");
num1 = in.nextInt ();
System.out.print ("Type in a line: ");
in.nextLine ();
str1 = in.nextLine ();
System.out.println ("num1:" +num1 +"\t str1:" + str1);

}
}

CPSC 219: Introduction to Java programming

James Tam

Useful Methods Of Class Scanner1

•nextInt ()
•nextLong ()
•nextFloat ()
•nextDouble ()

1 Online documentation: http://java.sun.com/javase/6/docs/api/

James Tam

Decision Making In Java

•Java decision making constructs
- if
- if, else
- if, else-if
- switch

CPSC 219: Introduction to Java programming

James Tam

Decision Making: Logical Operators

NOT

OR

AND

Logical Operation

!!

||||

&&&&

JavaC

James Tam

Decision Making: If

Format:
if (Boolean Expression)

Body

Example:
if (x != y)

System.out.println(“X and Y are not equal”);

if ((x > 0) && (y > 0))
{

System.out.println("X and Y are positive");
}

CPSC 219: Introduction to Java programming

James Tam

Decision Making: If, Else

Format:
if (Boolean expression)

Body of if
else

Body of else

Example:
if (x < 0)

System.out.println(“X is negative”);
else

System.out.println(“X is non-negative”);

James Tam

If, Else-If

Format:
if (Boolean expression)

Body of if
else if (Boolean expression)

Body of first else-if
: : :

else if (Boolean expression)
Body of last else-if

else
Body of else

CPSC 219: Introduction to Java programming

James Tam

If, Else-If (2)

Example:
if (gpa == 4)
{

System.out.println("A");
}
else if (gpa == 3)
{

System.out.println("B");
}
else if (gpa == 2)
{

System.out.println("C");
}

James Tam

If, Else-If (2)

else if (gpa == 1)
{

System.out.println("D");
}
else
{

System.out.println("Invalid gpa");
}

CPSC 219: Introduction to Java programming

James Tam

Alternative To Multiple Else-If’s: Switch (2)

Format (character-based switch):
switch (character variable name)
{

case ‘<character value>’:
Body
break;

case ‘<character value>’:
Body
break;

:
default:

Body
}

1 The type of variablein the brackets can be a byte, char, short, int or long

James Tam

Alternative To Multiple Else-If’s: Switch (2)

Format (integer based switch):
switch (integer variable name)
{

case <integer value>:
Body
break;

case <integer value>:
Body
break;

:
default:

Body
}

1 The type of variablein the brackets can be a byte, char, short, int or long

CPSC 219: Introduction to Java programming

James Tam

Loops

Java Pre-test loops
•For
•While

Java Post-test loop
•Do-while

James Tam

While Loops

Format:
while (Expression)

Body

Example:
int i = 1;
while (i <= 1000000)
{

System.out.println(“How much do I love thee?”);
System.out.println(“Let me count the ways: “, + i);
i = i + 1;

}

CPSC 219: Introduction to Java programming

James Tam

For Loops

Format:
for (initialization; Boolean expression; update control)

Body

Example:
for (i = 1; i <= 1000000; i++)
{

System.out.println(“How much do I love thee?”);
System.out.println(“Let me count the ways: ” + i);

}

James Tam

Do-While Loops

Format:
do

Body
while (Boolean expression);

Example:
char ch = 'A';
do
{

System.out.println(ch);
ch++;

}
while (ch != 'K');

CPSC 219: Introduction to Java programming

James Tam

Many Pre-Created Classes Have Been Created

•Rule of thumb: Before writing new program code to implement
the features of your program you should check to see if a class
has already been written that has methods that already
implement those features.

•The Java API is Sun Microsystems's collection of pre-built Java
classes:
- http://java.sun.com/javase/6/docs/api/

James Tam

Arrays

•Java arrays are very similar to arrays in C:
- Indexed from 0 to (size – 1).
- They must be homogeneous (each element contains the same type of
information).

•However they differ in one very important fashion:
- Java arrays always involve the dynamic allocation of memory (similar to
using ‘malloc’ or ‘alloc’ in ‘C’).

- An array variable is not actually an array but instead it is a reference to an
array.
•A reference is similar to a pointer and contains a memory address but unlike a
pointer low level operations such as “address of”/& and “de-referencing” of the
pointer using the ‘*’ aren’t possible. De-referencing is automatically done as
needed depending upon the context.

CPSC 219: Introduction to Java programming

James Tam

Arrays (2)

- This also means that while the size of the array in ‘C’ must generally be
determined when the program is written (at compile time a constant determines the
size) with Java arrays the size can be determined at runtime (the value stored in a
variable can determine the size).

James Tam

Arrays (3)

•Format (declaring a reference to an array):
<Type in each element> [] <array name>;

•Example (declaring a reference to an array):
int [] arr;

CPSC 219: Introduction to Java programming

James Tam

Arrays (4)

•Format (creating an array by allocating memory):
<array name> = new <Type in each element> [<array size>];

•Example (declaring a reference to an array):
arr = new int [4];

Of course the two steps could be combined into one step:

int [] arr = new int [4];

James Tam

Arrays (5)

•The complete program can be found in UNIX under:
/home/courses/219/examples/java_intro/MyArray.java

Scanner in = new Scanner (System.in);
int [] arr;
int size;
int i;
System.out.print ("Type in the size of the array: ");
size = in.nextInt ();
arr = new int [size];
for (i =0; i < size; i++)
{
arr[i] = i;
System.out.print(arr[i] + " ");

}
System.out.println();

CPSC 219: Introduction to Java programming

James Tam

Arrays: Null References

int [] arr = null;
arr[0] = 1; NullPointerException

James Tam

After This Section You Should Now Know

•How Java was developed and the impact of it's roots on the
language

•The basic structure required in creating a simple Java program
as well as how to compile and run programs

•How to document a Java program
•How to perform text based input and output in Java
•The declaration of constants and variables
•What are the common Java operators and how they work
•The structure and syntax of decision making and looping
constructs

•How to declare and manipulate arrays

