
CPSC 219: Inheritance

James Tam

Code Reuse Through Hierarchies

You will learn about different ways of
creating class hierarchies to better
organize and group attributes and
methods in order to facilitate code

reuse

James Tam

Review: Associations Between Classes

•One type of association relationship is a ‘has-a’ relation (also
known as “aggregation”).
- E.g. 1, A car <has-a> engine.
- E.g. 2, A lecture <has-a> student.

•Typically this type of relationship exists between classes when a
class is an attribute of another class.

public class Car
{

private Engine anEngine;
private Lights carLights;
public start ()
{

anEngine.ignite ();
carLight.turnOn ();

}
}

public class Engine
{

public boolean ignite () { .. }
}

public class Lights
{

private boolean isOn;
public void turnOn () { isOn =
true;}

}

CPSC 219: Inheritance

James Tam

A New Type Of Association: Is-A (Inheritance)

•An inheritance relation exists between two classes if
one class is one type of another class

Vehicle

Motorcycle BusCar

Mini Full sizedSUV Sports car

James Tam

What Is Inheritance?

•Taking the attributes/methods of an existing class.

Existing
class

•Attributes

•Behaviors

Inheritance: Represented as
sets

Existing class

New class

Inheritance: UML
representation

New class
•New attributes

•New behaviors

•Extend the existing class with a new class
-All non-private data and methods of the existing class are available to
the new class (but the reverse is not true).

CPSC 219: Inheritance

James Tam

Inheritance Terminology

Parent class

Child class

Superclass

Subclass

Generalization

Specialization

James Tam

Explanation For Some Of The Terms: Set Theory

All people on the earth

All people in Canada

(Superset - bigger group)

(Subset - smaller group)

Superclass (Button)

Subclass (RadioButton)

CPSC 219: Inheritance

James Tam

Explanation For Some Of The Terms:
Providing An Example

Generalization

Specialization

Medical
Doctor

Dermatologist

Opthamologist

Psychiatrist

James Tam

When To Employ Inheritance

•If you notice that certain behaviors or data is common among a
group of related classes.

•The commonalities may be defined by a superclass.
•What is unique may be defined by particular subclasses.

CPSC 219: Inheritance

James Tam

When To Employ Inheritance

Monster
• Name
• Damage it inflicts
• Damage it can sustain
• Speed

• Move
• Make

sound

Flying monsters Stone based monsters

James Tam

Where Should Attributes And Behaviors Be
Defined?

•Rule of thumb: Put them high enough in the inheritance
hierarchy so that all the appropriate sub-classes have access to
the attribute or behavior.
•Example:

Monster
• Name
• Damage it inflicts
• Damage it can sustain
• Speed

• Move
• Make sound

Common to
all monsters
in the game

CPSC 219: Inheritance

James Tam

Where Should Attributes And Behaviors Be
Defined? (2)

•Rule of thumb: Don’t put attributes and behaviors higher than
they need to be in the inheritance hierarchy otherwise some
classes will track information or perform actions that don’t
make sense.

Monster
• Name
• Damage it inflicts
• Damage it can sustain
• Speed

• Move
• Make sound
• Fly

James Tam

Using Inheritance

Format:
public class <Name of Subclass > extends <Name of Superclass>
{

// Definition of subclass – only what is unique to subclass
}

Example:
public class Dragon extends Monster
{

public void displaySpecial ()
{

System.out.println("Breath weapon: ");
}

}

CPSC 219: Inheritance

James Tam

The Parent Of All Classes

•You’ve already employed inheritance
•Class Object is at the top of the inheritance hierarchy
•Inheritance from class Object is implicit
•All other classes inherit it’s data and methods

-e.g., “toString” are available to it’s child classes

•For more information about this class see the url:
http://java.sun.com/j2se/1.5/docs/api/java/lang/Object.html

James Tam

Levels Of Access Permissions

•Private “-”
- Can only access the attribute/method in the methods of the class where the
attribute is originally defined.

•Protected “#”
- Can access the attribute/method in the methods of the class where the
attribute is originally defined or the subclasses of that class.

•Public “+”
- Can access attribute/method anywhere in the program.

CPSC 219: Inheritance

James Tam

Summary: Levels Of Access Permissions

NoYesYesProtected

NoNoYesPrivate

YesYesYesPublic

Not a subclassSubclass Same class

Access
level

Accessible to

James Tam

Levels Of Access Permission: An Example

public class P
{

private int num1;
protected int num2;
public int num3;
// Can access num1, num2 & num3 here.

}

public class C extends P
{

// Can’t access num1 here
}

public class Driver
{

// Can’t access num1 here.
}

CPSC 219: Inheritance

James Tam

General Rules Of Thumb

•Variable attributes should not have protected access but instead
should be private.

•Most methods should be public.
•Methods that are used only by the parent and child classes
should be made protected.

James Tam

Method Overriding

•Different versions of a method can be implemented in different
ways by the parent and child class in an inheritance hierarchy.

•Methods have the same name and parameter list (identical
signature) but different bodies

public class Parent public class Child extends Parent
{ {

: : : :
public void method () public void method ()
{ {

System.out.println(“m1”); num = 1;
} }

} }

CPSC 219: Inheritance

James Tam

Method Overloading Vs. Method Overriding

•Method Overloading
-Multiple method implementations for the same class
-Each method has the same name but the type, number or order of the
parameters is different (signatures are not the same)

-The method that is actually called is determined at program compile time
(early binding).

-i.e., <reference name>.<method name> (parameter list);

Distinguishes
overloaded methods

James Tam

Method Overloading Vs. Method Overriding (2)

•Example of method overloading:

public class Foo
{

public void display () { }
public void display (int i) { }
public void display (char ch) { }

}

Foo f = new Foo ();
f.display();
f.display(10);
f.display(‘c’);

CPSC 219: Inheritance

James Tam

Method Overloading Vs. Method Overriding (3)

•Method Overriding
-The method is implemented differently between the parent and child
classes.

-Each method has the same return value, name and parameter list
(identical signatures).

-The method that is actually called is determined at program run time (late
binding).

-i.e., <reference name>.<method name> (parameter list);

The type of the reference
(implicit parameter “this”)
distinguishes overridden
methods

James Tam

Method Overloading Vs. Method Overriding (4)

•Example of method overriding:
public class Foo
{

public void display () { … }
: :

}
public class FooChild extends Foo
{

public void display () { … }
}

Foo f = new Foo ();
f.display();

FooChild fc = new FooChild ();
fc.display ();

CPSC 219: Inheritance

James Tam

Polymorph

•The ability to take on different forms

Images from the game Dungeon Master by FTL

James Tam

Polymorphism In Object-Orientated Theory

•An overridden method that can take on many forms
•The type of an instance (the implicit parameter) determines at
program run-time which method will be executed.
public class Foo
{

public void display () { … }
: :

}
public class FooChild extends Foo
{

public void display () { … }
}

CPSC 219: Inheritance

James Tam

A Blast From The Past

Mummy

Scorpion

Dragon

Screamer

Ghost

Knight

Monsters

Weapons

Armour

Falchion

Longbow
Ninjato

Dungeon Master

:

James Tam

The Inheritance Hierarchy For The Monsters

Monster

Undead StoneBased Giggler Dragon

CPSC 219: Inheritance

James Tam

The Dragon Sub-Hierarchy

Dragon

Red
Dragon

Blue
Dragon

Halitosis
Dragon

James Tam

The Dragon Sub-Hierarchy

Dragon

Red
Dragon

Blue
Dragon

Halitosis
Dragon

CPSC 219: Inheritance

James Tam

Class DungeonMaster

•Example (The complete example can be found in the directory
/home/courses/219/examples/hiearchies/DMExample

public class DungeonMaster
{

public static void main (String [] args)
{

BlueDragon electro = new BlueDragon ();
RedDragon pinky = new RedDragon ();
HalitosisDragon stinky = new HalitosisDragon () ;

electro.displaySpecialAbility ();
pinky.displaySpecialAbility ();
stinky.displaySpecialAbility ();

}
}

James Tam

Class Monster

public class Monster
{

private int protection;
private int damageReceivable;
private int damageInflictable;
private int speed;
private String name;
public Monster ()
{

protection = 0;
damageReceivable = 1;
damageInflictable = 1;
speed = 1;
name = "Monster name: ";

}

CPSC 219: Inheritance

James Tam

Class Monster (2)

public int getProtection () {return protection;}
public void setProtection (int newValue) {protection = newValue;}
public int getDamageReceivable () {return damageReceivable;}
public void setDamageReceivable (int newValue) {damageReceivable =

newValue;}
public int getDamageInflictable () {return damageInflictable;}
public void setDamageInflictable (int newValue) {damageInflictable =

newValue;}
public int getSpeed () {return speed;}
public void setSpeed (int newValue) {speed = newValue;}
public String getName () {return name; }
public void setName (String newValue) {name = newValue;}
public void displaySpecialAbility ()
{

System.out.println("No special ability");
}

James Tam

Class Monster (3)

public String toString ()
{

String s = new String ();
s = s + "Protection: " + protection + "\n";
s = s + "Damage receivable: " + damageReceivable + "\n";
s = s + "Damage inflictable: " + damageInflictable + "\n";
s = s + "Speed: " + speed + "\n";
s = s + "Name: " + name + "\n";
return s;

}
} // End of definition for class Monster.

CPSC 219: Inheritance

James Tam

Class Dragon

public class Dragon extends Monster
{

public void displaySpecialAbility ()
{

System.out.print("Breath weapon: ");
}

}

James Tam

Class BlueDragon

public class BlueDragon extends Dragon
{

public void displaySpecialAbility ()
{

super.displaySpecialAbility ();
System.out.println("Lightening");

}
}

CPSC 219: Inheritance

James Tam

Class HalitosisDragon

public class HalitosisDragon extends Dragon
{

public void displaySpecialAbility ()
{

super.displaySpecialAbility();
System.out.println("Stinky");

}
}

James Tam

Class RedDragon

public class RedDragon extends Dragon
{

public void displaySpecialAbility ()
{

super.displaySpecialAbility();
System.out.println("Fire");

}
}

CPSC 219: Inheritance

James Tam

Changing Permissions Of
Overridden Methods

•The overridden method must have equal or stronger (less
restrictive) access permissions in the child class.

Parent
#method()

Child
+method()

Parent
#method()

Child
-method()

James Tam

Updated Scoping Rules

• When referring to an identifier in the method of a class
1. Look in the local memory space for that method
2. Look in the definition of the class
3. Look in the definition of the classes’ parent

CPSC 219: Inheritance

James Tam

Updated Scoping Rules (2)

public class P
{

}
public class C extends P
{

public void method ()
{

}
}

<<< First: Local >>>

<<< Second: Attribute>>>

<<< Third: Parent’s attribute >>>

James Tam

Accessing The Unique Attributes
And Methods Of The Parent

•All protected or public attributes and methods of the parent class
can be accessed directly in the child class
public class P
{

protected int num;
}

public class C extends P
{

public void method ()
{

this.num = 1;
// OR

num = 2;
}

}

CPSC 219: Inheritance

James Tam

Accessing The Non-Unique Attributes
And Methods Of The Parent

•An attribute or method exists in both the parent and child class
(has the same name in both)

•The method or attribute has public or protected access
•Must prefix the attribute or method with “super” to distinguish it
from the child class.

•Format:
super.methodName ()
super.attributeName

• Note: If you don’t preface the method attribute with the keyword “super”
then the by default the attribute or method of the child class will be
accessed.

James Tam

Accessing The Non-Unique Attributes And Methods
Of The Parent: An Example

public class P
{

protected int num;
protected void method ()
{

:
}

}

CPSC 219: Inheritance

James Tam

Accessing The Non-Unique Attributes And Methods
Of The Parent: An Example (2)

public class C extends P
{

protected int num;
public void method ()
{

num = 2;
super.num = 3;
super.method();

}
}

James Tam

Shadowing

•Local variables in a method or parameters to a method have the
same name as instance fields.

•Attributes of the subclass have the same name as attributes of
the superclass.

CPSC 219: Inheritance

James Tam

Attributes Of The Subclass Have The Same Name
As The SuperClasses’ Attributes

public class Foo
{

private int num;
public Foo () { num = 1; }
public int getNum () { return num; }
public void setNum (int newValue) {num = newValue; }

}

public class Bar extends Foo
{

public Bar ()
{

num = 10;
}

}

James Tam

Attributes Of The Subclass Have The Same Name
As The SuperClasses’ Attributes

public class Foo
{

private int num;
public Foo () { num = 1; }
public int getNum () { return num; }
public void setNum (int newValue) {num = newValue; }

}

public class Bar extends Foo
{

public Bar ()
{

num = 10;
}

}

Insufficient access
permissions: Program
won’t compile

CPSC 219: Inheritance

James Tam

Attributes Of The Subclass Have The Same Name
As The SuperClasses’ Attributes (2)

public class Foo
{

private int num;
public Foo () { num = 1; }
public int getNum () { return num; }
public void setNum (int newValue) {num = newValue; }

}

public class Bar extends Foo
{

private int num;
public Bar ()
{

num = 1;
}

}

James Tam

The Result Of Attribute Shadowing

public class Bar extends Foo
{

private int num;
public Bar ()
{

num = 10;
}
public int getSecondNum () { return num; }

}
public class Driver
{

public static void main (String [] arv)
{

Bar b = new Bar ();
System.out.println(b.getNum());

System.out.println(b.getSecondNum());
}

}

CPSC 219: Inheritance

James Tam

Casting And Inheritance

•Because the child class IS-A parent class you can substitute
instances of a subclass for instances of a superclass.

Monster

Dragon

BlueDragon

You can substitute a
Dragon for a
Monster

You can substitute a
BlueDragon for a
Dragon

James Tam

Casting And Inheritance (2)

•You cannot substitute instances of a superclass for instances of a
subclass

Monster

Dragon

BlueDragon

You cannot
substitute a
Monster for a
Dragon

You cannot
substitute a
Dragon for a
BlueDragonx

CPSC 219: Inheritance

James Tam

Casting And Inheritance: A Previous Example

public class Monster
{

private int protection;
private int damageReceivable;
private int damageInflictable;
private int speed;
private String name;

: : :
public int getProtection () {return protection;}

: : :
}

James Tam

Casting And Inheritance: A Previous Example

public class Dragon extends Monster
{

public void displaySpecialAbility ()
{

System.out.print("Breath weapon: ");
}

public void fly ()
{

System.out.println("Flying");
}

}

CPSC 219: Inheritance

James Tam

Casting And Inheritance: A Previous Example

public class BlueDragon extends Dragon
{

public void displaySpecialAbility ()
{

super.displaySpecialAbility ();
System.out.println("Lightening");

}

public void absorbElectricity ()
{

System.out.println("Absorbing electricity.");
}

}

James Tam

Substituting Sub And Super Classes

•You can substitute an instance of a sub class for an instance of a
super class.

BlueDragon electro = new BlueDragon ();
Monster aMonster = new Monster ();

System.out.println(aMonster.getProtection());
System.out.println(electro.getProtection());

Dragon

BlueDragon

Monster
+getProtection ()

CPSC 219: Inheritance

James Tam

Substituting Sub And Super Classes

•You cannot substitute an instance of a super class for an
instance of a sub class.

BlueDragon electro = new BlueDragon ();
Monster aMonster = new Monster ();

electro.absorbElectricity ();
aMonster.absorbElectricity ();

Monster

Dragon

BlueDragon

+absorbElectricity()

James Tam

Casting And Inheritance

BlueDragon electro = new BlueDragon ();
Monster aMonster;

aMonster = electro;
aMonster.fly();
aMonster.absorbElectricity();

aMonster = new Monster ();
electro = aMonster;

electro = (BlueDragon) aMonster;
electro.fly();
electro.absorbElectricity();

x
x

x

x
x
x

Monster

BlueDragon

+absorbElectricity()

Dragon
+fly()

CPSC 219: Inheritance

James Tam

Casting And Inheritance (2)

•When casting between classes only use the cast operator if you
are sure of the type.

BlueDragon electro = new BlueDragon ();
Monster aMonster;
aMonster = electro;

if (aMonster instanceof BlueDragon)
{

System.out.println("AMonster is a reference to an instance of a
BlueDragon");

electro = (BlueDragon) aMonster;
electro.fly();
electro.absorbElectricity();

}

James Tam

Casting And Inheritance (3)

•When casting between classes only use the cast operator if you
are sure of the type.

BlueDragon electro = new BlueDragon ();
Monster aMonster;
aMonster = electro;

if (aMonster instanceof BlueDragon)
{

System.out.println("AMonster is actually a reference to an instance of
a BlueDragon");

((BlueDragon) aMonster).fly();
((BlueDragon) aMonster).absorbElectricity();

}

CPSC 219: Inheritance

James Tam

Another Scoping Example

The complete example can be found in UNIX under:
/home/courses/219/examples/scope:

public class ScopingExample
{

public static void main (String [] args)
{

P p1 = new P ();
C c1 = new C ();
GC gc1 = new GC ();
gc1.method1();
gc1.method2();
gc1.method3();
gc1.method();

}
}

James Tam

Another Scoping Example (2)

public class GC extends C
{

private int num1;
public GC ()
{

num1 = 1;
}
public void method1 ()
{

System.out.println("GC's method 1");
super.method1();

}
public void method2 ()
{

System.out.println("GC's method 2");
super.method2();

}

CPSC 219: Inheritance

James Tam

Another Scoping Example (3)

public void method3 ()
{

int num0 = 0;
System.out.println("num0=" + num0);
System.out.println("num1=" + num1);
System.out.println("num2=" + num2);
System.out.println("num3=" + num3);
System.out.println("ch=" + ch);

}

public void method ()
{

super.method1();
}

} // End of class GC

James Tam

Another Scoping Example (4)

public class C extends P
{

protected int num2;
protected char ch1;
public C ()
{

ch = 'C';
num2 = 2;

}
public void method1 ()
{

System.out.println("C's method 1");
}
public void method2 ()
{

System.out.println("C's method 2");
super.method2();

}
} // End of class C

CPSC 219: Inheritance

James Tam

Another Scoping Example (5)

public class P
{

protected int num3;
protected char ch;
public P ()
{

ch = 'P';
num3 = 3;

}
public void method1 ()
{

System.out.println("P's method 1");
}
public void method2 ()
{

System.out.println("P's method 2");
}

} // End of class P

James Tam

The Final Modifier (Inheritance)

•Methods preceded by the final modifier cannot be overridden
e.g., public final void displayTwo ()

•Classes preceded by the final modifier cannot be extended
- e.g., final public class ParentFoo

CPSC 219: Inheritance

James Tam

Why Employ Inheritance

•To allow for code reuse
•It may result in more robust code

Existing class

New class

James Tam

Java Interfaces (Type)

•Similar to a class
•Provides a design guide rather than implementation details
•Specifies what methods should be implemented but not how

- An important design tool and agreement for the interfaces should occur
very early before program code has been written.

- (Specify the signature of methods so each part of the project can proceed
with minimal coupling between classes).

•It’s a design tool so they cannot be instantiated

CPSC 219: Inheritance

James Tam

Interfaces: Format

Format for defining an interface
public interface <name of interface>
{

constants
methods to be implemented by the class that realizes this interface

}

Format for realizing / implementing the interface
public class <name of class> implements <name of interface>
{

attributes
methods actually implemented by this class

}

James Tam

Interfaces: A Checkers Example

Basic board

Regular rules

Variant rules

CPSC 219: Inheritance

James Tam

Interface Board

public interface Board
{

public static final int SIZE = 8;
public void displayBoard ();
public void initializeBoard ();
public void movePiece ();
boolean moveValid (int xSource, int ySource, int xDestination,

int yDestination);
: : :

}

James Tam

Class RegularBoard

public class RegularBoard implements Board
{

public void displayBoard ()
{

:
}

public void initializeBoard ()
{

:
}

CPSC 219: Inheritance

James Tam

Class RegularBoard (2)

public void movePiece ()
{

// Get (x, y) coordinates for the source and destination
if (moveValid (xS, yS, xD, yD) == true)

// Actually move the piece
else

// Don’t move piece and display error message
}

public boolean moveValid (int xSource, int ySource, int xDestination,
int yDestination)

{
if (moving forward diagonally)

return true;
else

return false;
}

} // End of class RegularBoard

James Tam

Class VariantBoard

public class VariantBoard implements Board
{

public void displayBoard ()
{

:
}

public void initializeBoard ()
{

:
}

CPSC 219: Inheritance

James Tam

Class VariantBoard (2)

public void movePiece ()
{

// Get (x, y) coordinates for the source and destination
if (moveValid (xS, yS, xD, yD) == true)
// Actually move the piece
else
// Don’t move piece and display error message

}

public boolean moveValid (int xSource, int ySource, int xDestination,
int yDestination)

{
if (moving straight-forward or straight side-ways)

return true;
else

return false;
}

} // End of class VariantBoard

James Tam

Interfaces: Recapping The Example

•Interface Board
- No state (variable data) or behavior (body of the method is empty)
- Specifies the behaviors that a board should exhibit e.g., clear screen
- This is done by listing the methods that must be implemented by classes
that implement the interface.

•Class RegularBoard and VariantBoard
- Can have state and methods
- They must implement all the methods specified by interface Board (but
can also implement other methods too)

CPSC 219: Inheritance

James Tam

Specifying Interfaces In UML

<< interface >>

Interface name
method specification

Class name
method implementation

Realization / Implements

James Tam

Alternate UML Representation (Lollipop Notation)

Class name
method implementation

Interface
name

CPSC 219: Inheritance

James Tam

Implementing Multiple Interfaces

Class

Interface1 Interface2 Interface3

James Tam

Implementing Multiple Interfaces

Format:
public class <class name> implements <interface name 1>,

<interface name 2>, <interface name 3>…
{

}

CPSC 219: Inheritance

James Tam

Multiple Implementations Vs. Multiple Inheritance

•A class can implement multiple interfaces
•Classes in Java cannot extend more than one class
•This is not possible in Java but is possible in other languages
such as C++:

class <class name 1> extends <class
name 2>, <class name 3>…

{

}

James Tam

Multiple Implementations Vs.
Multiple Inheritance (2)

•A class can implement all the methods of multiple interfaces
•Classes in Java cannot extend more than one class
•This is not possible in Java but is possible in other languages
such as C++:

Parent class 1 Parent class 2 Parent class 3

Child class

CPSC 219: Inheritance

James Tam

Abstract Classes

•Classes that cannot be instantiated
•A hybrid between regular classes and interfaces
•Some methods may be implemented while others are only
specified

•Used when the parent class cannot define a complete default
implementation (implementation must be specified by the child
class).

•Format:
public abstract class <class name>
{

<public/private/protected> abstract method ();
}

James Tam

Abstract Classes (2)

•Example1:
public abstract class BankAccount

{
protected float balance;
public void displayBalance ()
{

System.out.println("Balance $" + balance);
}
public abstract void deductFees () ;

}

1) From “Big Java” by C. Horstmann pp. 449 – 500.

CPSC 219: Inheritance

James Tam

Another Example For An Abstract Class

<< interface >>

Board
+SIZE:int

+displayBoard ()

+initializeBoard ()

+movePiece ()

+moveValid ()

CheckerBoard

{abstract}
+displayBoard ()

+initializeBoard ()

+movePiece ()

+moveValid ()

RegularBoard

+moveValid ()

VariantBoard

+moveValid ()

James Tam

You Should Now Know

•How the inheritance relationship works
- When to employ inheritance and when to employ other types of relations
- What are the benefits of employing inheritance
- How to create and use an inheritance relation in Java
- How casting works within an inheritance hierarchy
- What is the effect of the keyword "final" on inheritance relationships
- Issues related to methods and attributes when employing inheritance

•What is method overloading?
- How does it differ from method overriding
- What is polymorphism

CPSC 219: Inheritance

James Tam

You Should Now Know (2)

•What are interfaces/types
-How do types differ from classes
-How to implement and use interfaces in Java

•What are abstract classes in Java and how do they differ from
non-abstract classes and interfaces.

•How to read/write UML notations for inheritance and interfaces.

