
Multi-threading in Java

James Tam

Java Threads

You will learn how to write programs that
can ‘simultaneously’ execute multiple
activities using Java threads.

James Tam

What You Know

• How to write Java programs to complete one activity at a
time e.g., open a file, get input from the user, output
something onscreen, execute a loop etc.

• For the type of programs that you have written so far this is
sufficient e.g., single user command line interface.

• Some examples of situations where this may be insufficient:
–Processor-intensive programs
–Graphical user interfaces (where user interaction with the program
isn’t constrained to fixed points in the program such as when the
program requests console input).

Multi-threading in Java

James Tam

What You Will Learn

• How to write a program that can either:
–(Multi-core/multi-processor system): work on multiple activities in
parallel.

–(Single core/single processor system): simulate parallel execution by
switching between tasks.

With early operating
systems (e.g., MS-DOS to
Windows 3.1) multi-tasking
was simulated

Kung Fu: The Next Generation © Warner Brothers

James Tam

How Can This Be Applied

• Obvious case: several tasks being executed by one program
some of which may be quite processor-intensive.

Computer game

Strategy for
computer opponent

Strategy for
computer opponent

Process player
selections

Database search
(information for game)

Multi-threading in Java

James Tam

How Can This Be Applied (2)

• A simple graphical system.

Adding a new contact
(transfer address from text
field to list).

Feedback is provided but
a time delay is used (locks
the entire interface).

James Tam

How This Can Be Done In Java

• Thread:
–A thread is a part of a program that carries out a task (a Java program
must have a main thread).

–Different threads can work on different tasks.
–Each thread resides in shared memory so they can communicate as
needed.

Multi-threading in Java

James Tam

Why Aren’t All Programs Written This Way

• Complexity:
–Multiple threads means that multiple things are occurring (sometimes
at the same time) so there is more to go wrong e.g., which thread
caused that logic error to occur?

• Speed
–Running a multi-threaded program on a computer that can support
parallel execution can speed up execution (different tasks are
performed at the same time).

–However running a multi-threaded program (vs. non-multithreaded
program) on a computer that does not support parallel execution can
actually slow down execution (because employing threads requires
some overhead).

James Tam

Reminder: All Java Programs Have At Least One
Thread

• The ‘main’ thread that executes when the program is run.
• Example, an executable version can be found in UNIX

under:
/home/courses/219/examples/threads/exampleOne

Multi-threading in Java

James Tam

Driver Class

public class Driver
{

public static void main (String [] args)
{

System.out.println("start");
try
{

Thread.sleep(10000);
}
catch (InterruptedException e)
{

System.out.println("Interupt in time delay");
}
System.out.println("stop");

}
}

James Tam

Another Example Of Manipulating A Thread

• Example, an executable version can be found in UNIX
under:
/home/courses/219/examples/threads/exampleOne

Multi-threading in Java

James Tam

The Driver Class

public class SleepMessages
{

public static void main(String args[]) throws InterruptedException
{

String importantInfo[] = new String [4];
importantInfo[0] = "Mares eat oats";
importantInfo[1] = "Does eat oats";
importantInfo[2] = "Little lambs eat ivy";
importantInfo[3] = "A kid will eat ivy too";
for (int i = 0; i < importantInfo.length; i++)
{

//Pause for 4 seconds
Thread.sleep(4000);
//Print a message
System.out.println(importantInfo[i]);

}
}

}

James Tam

What You Have Learned So Far

• The previous examples have just manipulated the main
thread.

• No new threads or parallel execution has occurred.

Multi-threading in Java

James Tam

How To Create A New Thread In Java

1. Define a class that implements the Runnable interface.
2. Define a class that extends the Thread class (which in turn

implements the Runnable interface).

In both cases the start() method must be implemented in order for a
new thread to be created. This method will also automatically call
another method run ().

James Tam

Method I: Implement The Runnable Interface

• There is one method that must be implemented: run ()
–The method must be public.
–It doesn’t have to have parameters passed into it.
–Nor does it require a return value.

• This is the preferred approach to implement multi-threading
(Sun)

–This allows your class to extend other classes (remember Java does
not support multiple inheritance).

–But you may need an attribute that is an instance of class Thread in
order to take advantage of some of that classes methods (e.g., to set
the priority of the thread – later examples).

Multi-threading in Java

James Tam

Method I: Implement The Runnable Interface (2)

• Example: the full example can be found in UNIX in the
directory: /home/courses/219/examples/threads/exampleTwo

public class HelloRunnable implements Runnable
{

public void run()
{

System.out.println("Hello from a thread!");
}
public static void main(String args[])
{

(new Thread(new HelloRunnable())).start();
}

}

James Tam

Method II: Extend Class Thread

• Example: the full example can be found in UNIX in the
directory: /home/courses/219/examples/threads/exampleTwo

public class HelloThread extends Thread
{

public void run()
{

System.out.println("Hello from a thread!");
}

public static void main(String args[])
{

(new HelloThread()).start();
}

}

Multi-threading in Java

James Tam

Discussion Of Start () And Run ()

• Start () creates a new thread, calls run and returns.
• Run () is started when the thread actually begins executing and doesn’t

return until the thread is finished executing.
• Although it may appear that start() is redundant, it’s mandatory in order

for a thread to be created:
• Example I (sequential execution, no new threads created):

Thread one = new Thread ();
Thread two = new Thread ();
one.run ();
two.run ();

• Example II (parallel execution, two threads created):
Thread one = new Thread ();
Thread two = new Thread ();
one.start ();
two.start ();

James Tam

Child And Parent Threads

• Parent spawning new threads.
• This example sets the stage for the examples to come and

will separate the Driver class from the class that employs
multi-threading.

• Parent thread: the original parent thread in the next example
will be the main () thread.

• Child thread: created by a parent thread (main in the next
example) and is created by the call to the start () method of
MyThread.

• The full example can be found in UNIX in the directory:
/home/courses/219/examples/threads/exampleThree

Multi-threading in Java

James Tam

Child And Parent Threads

public class MyThread implements Runnable{
Thread t;
MyThread () {

t = new Thread(this,"My thread");
t.start ();

}
public void run() {

System.out.println("Child thread started");
System.out.println("Child thread terminated");

}
}

public class Driver {
public static void main (String args[]){

new MyThread();
System.out.println("Main thread started");
System.out.println("Main thread terminated");

}
}

James Tam

Spawning Multiple Threads

• Sometimes multiple threads are needed e.g., one to control
each computer player e.g., one for every concurrently
printed document.

• Creating a new instance of a thread (using one of the two
methods previously mentioned) and calling the start method
will spawn or start a new thread.

• The full example can be found in UNIX in the directory:
/home/courses/219/examples/threads/exampleFour

Multi-threading in Java

James Tam

Driver Class

public class Driver
{

public static void main (String args [])
{

new MyThread ("1");
new MyThread ("2");
new MyThread ("3");
new MyThread ("4");
try
{

Thread.sleep (10000);
}
catch (InterruptedException e)
{
System.out.println("Exception: Thread main interrupted.");

}
System.out.println("Terminating thread: main thread.");

}
}

James Tam

Class MyThread

public class MyThread implements Runnable
{

String tName;
Thread t;
MyThread (String threadName)
{

tName = threadName;
t = new Thread (this, tName);
t.start();

}

Multi-threading in Java

James Tam

Class MyThread (2)

public void run()
{

try
{

System.out.println("Thread: " + tName);
Thread.sleep(2000);

}
catch (InterruptedException e)
{

System.out.println("Exception: Thread "
+ tName + " interrupted");

}
System.out.println("Terminating thread: " + tName);

}
}

James Tam

Checking The Status Of A Thread

• isAlive (): returns a boolean value depending on whether the
thread is still running.

• join (): is called when a child thread is terminating and
‘joining’ the main thread.

• There is no guarantee that a parent thread will terminate
after a child thread.

–The previous example uses a time estimate.

• The following example will use the join() method to ensure
that all the child threads have terminated before ending the
main thread.

• The full example can be found in UNIX in the directory:
/home/courses/219/examples/threads/exampleFive

Multi-threading in Java

James Tam

Driver Class

public class Driver
{

public static void main (String args [])
{

MyThread thread1 = new MyThread ("1");
MyThread thread2 = new MyThread ("2");
MyThread thread3 = new MyThread ("3");
MyThread thread4 = new MyThread ("4");
System.out.println("Main thread Status: Alive");
System.out.println("Thread 1: " + thread1.t.isAlive());
System.out.println("Thread 2: " + thread2.t.isAlive());
System.out.println("Thread 3: " + thread3.t.isAlive());
System.out.println("Thread 4: " + thread4.t.isAlive());

James Tam

Driver Class (2)

try
{

System.out.println("Threads Joining.");
thread1.t.join();
thread2.t.join();
thread3.t.join();
thread4.t.join();

}
catch (InterruptedException e) {
System.out.println("Exception: Thread main interrupted.");

}
System.out.println("Main thread Status: Alive");
System.out.println("Thread 1: " + thread1.t.isAlive());
System.out.println("Thread 2: " + thread2.t.isAlive());
System.out.println("Thread 3: " + thread3.t.isAlive());
System.out.println("Thread 4: " + thread4.t.isAlive());
System.out.println("Terminating thread: main thread.");

}
}

Multi-threading in Java

James Tam

Class MyThread

class MyThread implements Runnable
{

String tName;
Thread t;
MyThread (String threadName)
{

tName = threadName;
t = new Thread (this, tName);
t.start();

}

James Tam

Class MyThread (2)

public void run()
{

try
{

Thread.sleep(2000);
}
catch (InterruptedException e)
{

System.out.println("Exception: Thread " + tName + " interrupted");
}
System.out.println("Terminating thread: " + tName);

}
}

Multi-threading in Java

James Tam

Thread Priority

• Each thread has an integer priority level from 1 – 10.
• Threads with a higher priority (larger number) will have

access to resources before threads with a lower priority.
• The default priority is 5.
• In general a lower priority thread will have to wait for a

higher priority resource before it can use the resource.
• If two threads have the same priority level then it’s a first-

come, first served approach.
• getPriority() and setPriority () are the accessor and mutator

methods of the priority level class Thread.
• Also MIN_PRIORITY, MAX_PRIORITY, NORM_PRIORITY are

constants defined in class Thread.

James Tam

An Example Demonstrating Thread Priority

• The full example can be found in UNIX in the directory:
/home/courses/219/examples/threads/exampleSix

Multi-threading in Java

James Tam

The Driver Class

class Driver
{

public static void main(String args[])
{

Thread.currentThread().setPriority(10);
MyThread lowPriority = new MyThread (3, "low priority");
MyThread highPriority = new MyThread (7, "high priority");
lowPriority.start();
highPriority.start();

James Tam

The Driver Class (2)

try
{

Thread.sleep(1000);
}
catch (InterruptedException e)
{

System.out.println("Main thread interrupted.");
}
lowPriority.stop();
highPriority.stop();
try
{

highPriority.t.join();
lowPriority.t.join();

}
catch (InterruptedException e)
{

System.out.println("InterruptedException caught");
}

Multi-threading in Java

James Tam

Class MyThread

public class MyThread implements Runnable
{
Thread t;
private volatile boolean running = true;
public MyThread (int p, String tName)
{

t = new Thread(this,tName);
t.setPriority (p);

}
public void run()
{

System.out.println(t.getName() + " running.");
}
public void stop()
{

running = false;
System.out.println(t.getName() + " stopped.");

}

James Tam

Class MyThread (2)

public void start()
{

System.out.println(t.getName() + " started");
t.start();

}
}

Multi-threading in Java

James Tam

What To Do If Multiple Threads Need Access
To The Same Resource?

Resource

(e.g., method,

File,

Variable etc.)

Thread I Thread II

James Tam

What To Do If Multiple Threads Need Access
To The Same Resource?

Resource

(e.g., method,

File,

Variable etc.)

Thread I Thread II

Multi-threading in Java

James Tam

What To Do If Multiple Threads Need Access
To The Same Resource?

Resource

(e.g., method,

File,

Variable etc.)

Thread I Thread II

James Tam

Synchronization

• Ensures that only one thread can access the resource at a
time.

• The synchronization of threads access to a resource occurs
through a monitor (an object that is the key to access a
resource).

• Since only one thread can have access to the object at a
time, only one thread can access the resource at a time.

• Semaphore: Another name for the monitor.
• Approaches to synchronizing threads:

1. Using a synchronized method.
2. Using the synchronized statement.

Multi-threading in Java

James Tam

An Example Where Synchronization Is Needed

• The full example can be found in UNIX in the directory:
/home/courses/219/examples/threads/exampleSeven

James Tam

Class Driver

public class Driver
{

public static void main (String args[])
{
Parentheses p3 = new Parentheses();
MyThread name1 = new MyThread(p3, "Bob");
MyThread name2 = new MyThread(p3, "Mary");
try
{

name1.t.join();
name2.t.join();

} catch (InterruptedException e) {
System.out.println("Interrupted");

}
}

}

Multi-threading in Java

James Tam

Class MyThread

public class MyThread implements Runnable
{

String s1;
Parentheses p1;
Thread t;
public MyThread (Parentheses p2, String s2)
{

p1= p2;
s1= s2;
t = new Thread(this);
t.start();

}
public void run()
{
p1.display(s1);

}
}

James Tam

Class Parentheses

public class Parentheses
{

void display(String s)
{

System.out.print ("(" + s);
try
{

Thread.sleep (1000);
}
catch (InterruptedException e)
{

System.out.println ("Interrupted");
}

System.out.println(")");
}

}

Multi-threading in Java

James Tam

The Synchronization Method

• The thread that is the first one to call a synchronized method
is said to own the method and the resources employed by
the method.

• Other methods that call the synchronized method are
suspended until the first method returns from the method.

• If the synchronized method is an instance then the lock is
associated with the instance method that invoked the
synchronized method.

• If the synchronized method is a static method then the lock
is associated with the class that defined the synchronized
method.

James Tam

A Revised Example Using A Synchronized Method

• The full example can be found in UNIX in the directory:
/home/courses/219/examples/threads/exampleEight

Multi-threading in Java

James Tam

The Driver Class

public class Driver
{

public static void main (String args[])
{
Parentheses p3 = new Parentheses();
MyThread name1 = new MyThread(p3, "Bob");
MyThread name2 = new MyThread(p3, "Mary");
try
{

name1.t.join();
name2.t.join();

}
catch (InterruptedException e)
{
System.out.println("Interrupted");

}
}

}

James Tam

MyThread Class

public class MyThread implements Runnable
{

String s1;
Parentheses p1;
Thread t;
public MyThread (Parentheses p2, String s2)
{

p1= p2;
s1= s2;
t = new Thread(this);
t.start();

}
public void run()
{

p1.display(s1);
}

}

Multi-threading in Java

James Tam

Class Parentheses

public class Parentheses
{

synchronized void display(String s)
{

System.out.print ("(" + s);
try
{

Thread.sleep (1000);
}
catch (InterruptedException e)
{

System.out.println ("Interrupted");
}
System.out.println(")");

}
}

James Tam

Synchronizing Statements

• Sometimes a method cannot be defined as ‘synchronized’
e.g., third party software where the source code isn’t
available.

• In this case the call to the method (that will be accessed by
multiple threads) can be synchronized.

• Calls to the synchronized statements can only be made with
access to the monitor (the object whose statements are being
executed).

Multi-threading in Java

James Tam

A Revised Example Using Synchronized Statements

• The full example can be found in UNIX in the directory:
/home/courses/219/examples/threads/exampleNine

James Tam

The Driver Class

public class Driver
{

public static void main (String args[])
{
Parentheses p3 = new Parentheses();
MyThread name1 = new MyThread(p3, "Bob");
MyThread name2 = new MyThread(p3, "Mary");
try
{

name1.t.join();
name2.t.join();

}
catch (InterruptedException e)
{

System.out.println("Interrupted");
}

}
}

Multi-threading in Java

James Tam

Class MyThread

class MyThread implements Runnable
{

String s1;
Parentheses p1;
Thread t;
public MyThread (Parentheses p2, String s2)

{
p1= p2;
s1= s2;
t = new Thread(this);
t.start();

}
public void run() {

synchronized(p1)
{

p1.display(s1);
}

}
}

James Tam

Class

public class Parentheses
{

void display(String s)
{

System.out.print ("(" + s);
try
{

Thread.sleep (1000);
}
catch (InterruptedException e)
{

System.out.println ("Interrupted");
}
System.out.println(")");

}
}

Multi-threading in Java

James Tam

Communicating Between Threads

• While threads can work independently and in parallel sometimes there’s
a need for threads to coordinate their work.

–E.g., the output of one thread periodically becomes the input of another
thread.

–This is referred to as inter-process communication.
• wait ():

–Tells a thread to relinquish a monitor and go into suspension.
–With no parameters the thread will remain suspended until it’s been notified
that it should come out of suspension.

–An integer parameter will tell the thread how many milliseconds that it
should be suspended.

• Notify ():
–Tells a thread suspended by wait () to wake up again and to resume control
of the monitor.

• notifyAll ():
–Wakes up all threads that are waiting for the monitor.
–The thread with the highest priority will gain access while the other threads
wait in suspension.

James Tam

An Example Illustrating Inter-process
Communication

• The full example can be found in UNIX in the directory:
/home/courses/219/examples/threads/exampleTen

Multi-threading in Java

James Tam

The Driver Class

public class Driver
{

public static void main(String args [])
{
Queue q = new Queue ();
new Publisher (q);
new Consumer (q);

}
}

James Tam

Class Queue

public class Queue
{

int exchangeValue;
boolean busy = false;

Multi-threading in Java

James Tam

Class Queue (2)

synchronized int get()
{

if (busy == false)
{

try
{

wait();
}
catch (InterruptedException e)
{

System.out.println("Get: InterruptedException");
}

}
System.out.println("Get: " + exchangeValue);
busy = false;
notify();
return exchangeValue;

}

James Tam

Class Queue (3)

synchronized void put (int exchangeValue)
{

if (busy == true)
{

try
{

wait();
}
catch (InterruptedException e)
{

System.out.println("Put: InterruptedException");
}

}
this.exchangeValue = exchangeValue;
busy = true;
System.out.println("Put: " + exchangeValue);
notify();

}
}

Multi-threading in Java

James Tam

Class Publisher

public class Publisher implements Runnable
{

Queue q;
Publisher(Queue q)
{

this.q = q;
new Thread (this, "Publisher").start();

}
public void run()
{

for (int i = 0; i < 5; i++)
{

q.put(i);
}

}
}

James Tam

Class Consumer

public class Consumer implements Runnable
{

Queue q;
Consumer (Queue q)
{

this.q = q;
new Thread (this, "Consumer").start();

}
public void run()
{

for (int i = 0; i < 5; i++)
{

q.get();
}

}
}

Multi-threading in Java

James Tam

Key Parts Of The Queue Class Side By Side

synchronized void put (int
exchangeValue)

{
if (busy == true {

try {
wait();

}
catch (InterruptedException e) {

System.out.println("Put:
InterruptedException");

}
}
this.exchangeValue =

exchangeValue;
busy = true;
System.out.println("Put: " +

exchangeValue);
notify();

}
}

synchronized int get() {
if (busy == false) {

try {
wait();

}
catch (InterruptedException e) {

System.out.println("Get:
InterruptedException");

}
}
System.out.println("Get: " +

exchangeValue);
busy = false;
notify();
return exchangeValue;

}

James Tam

Suspending And Resuming Threads

• There may be a need to temporarily pause a thread (e.g., so
another thread can access a needed resource).

• Suspend (): a method to temporarily pause a thread.
• Resume (): a method sent to a suspended thread to tell it to

resume execution.

Multi-threading in Java

James Tam

An Example: Suspending And Resuming Threads

• The full example can be found in UNIX in the directory:
/home/courses/219/examples/threads/exampleEleven

James Tam

The Driver Class

public class Driver
{

public static void main (String args [])
{

MyThread t1 = new MyThread();
try

{
Thread.sleep(1000);
t1.suspendThread();
System.out.println("My thread: Suspended");
Thread.sleep(1000);
t1.resumeThread();
System.out.println("My Thread: Resume");

}
catch (InterruptedException e)
{

System.out.println("Main thread interrupted.");
}

Multi-threading in Java

James Tam

The Driver Class (2)

try
{

t1.t.join();
}
catch (InterruptedException e)
{

System.out.println ("Main Thread: interrupted during join");
}

}
}

James Tam

Class MyThread

public class MyThread implements Runnable
{

String name;
Thread t;
boolean suspended;

MyThread()
{

t = new Thread(this, "New thread");
suspended = false ;
t.start();

}

Multi-threading in Java

James Tam

Class MyThread (2)

public void run() {
try {

for (int i = 0; i < 10; i++) {
System.out.println("Thread: " + i);
Thread.sleep(200);
synchronized (this) {

if (suspended == true) {
System.out.println(suspended);
wait();

}
}

}
}
catch (InterruptedException e) {

System.out.println("MyThread: interrupted.");
}
System.out.println("MyThread exiting.");

}

James Tam

Class MyThread (3)

void suspendThread()
{

System.out.println("MyThread suspended" + this);
suspended = true;

}
synchronized void resumeThread()
{

suspended = false;
notify();

}
}

Multi-threading in Java

James Tam

Sources For The Lecture Content

• McGraw-Hill:
–http://www.devarticles.com

• Sun:
–www.java.sun.com

• IBM:
–www.ibm.com

James Tam

Sources For The Lecture Content

• McGraw-Hill:
–http://www.devarticles.com

• Sun:
–www.java.sun.com

• IBM:
–www.ibm.com

Multi-threading in Java

James Tam

You Should Now Know

•When there is a need for parallel execution
•How and when threads can allow for parallel execution
•What don't all programs employ multiple threads
•The two ways in which threads can be created in Java and
consequences of each approach

•What is the purpose of the start () and run () methods and
how they're related

•How are child and parent threads related / How to spawn a
new thread

•How to use methods for checking the status of a thread
isAlive () and join ()

•How to use methods for checking and setting the priority of
a thread

James Tam

You Should Now Know (2)

• Two ways of synchronizing threads and why
synchronization is important

• The role of a monitor/semaphore in synchronization
• How to get threads to communicate (inter-process

communication) via wait(), notify() and notifyAll ()
• How to suspend and resume threads

