
Programming: Repetition

James Tam

Problem Decomposition

This section of notes shows you how to
break down a large problem into smaller
parts that are easier to implement and
manage.

James Tam

Problem Solving Approaches

• Bottom up
• Top down

Programming: Repetition

James Tam

Bottom Up Approach To Design

•Start implementing all details of a solution without
first developing a structure or a plan.

•Potential problems:
–Generic problems): Redundancies and lack of coherence between
sections.

–(Programming specific problem): Trying to implement all the details of
large problem all at once may prove to be overwhelming.

Here is the first of my many witty
anecdotes, it took place in a “Tim
Horton’s” in Balzac..

James Tam

Top Down Design

1. Start by outlining the major parts (structure)

2. Then implement the solution for each part

My autobiography

Chapter 1:
The humble beginnings

Chapter 2:
My rise to greatness

… Chapter 7:
The end of an era

Chapter 1: The humble beginnings

It all started ten and one score years ago
with a log-shaped work station…

Programming: Repetition

James Tam

Procedural Programming: Breaking A Large
Problem Down

Figure extracted from Computer Science Illuminated by Dale N. and Lewis J.

General approach

Approach
to part of
problem

Specific
steps of
the
solution

Abstract/
General

Particular

Top

Bottom

Approach
to part of
problem

Approach
to part of
problem

Specific
steps of
the
solution

Specific
steps of
the
solution

Specific
steps of
the
solution

James Tam

Procedural Programming

Main tasks to
be fulfilled by
the program

Important
subtask #1

Important
subtask #2

Important
subtask #3

Function #1

…Etc.

Function #2 Function #3 …Etc.

Programming: Repetition

James Tam

Decomposing A Problem Into Procedures

•Break down the program by what it does (described with
actions/verbs).

•Eventually the different parts of the program will be
implemented as functions.

James Tam

Example Problem

• Design a program that will perform a simple interest
calculation.

• The program should prompt the user for the appropriate values,
perform the calculation and display the values onscreen.

• Action/verb list:
- Prompt
- Calculate
- Display

Programming: Repetition

James Tam

Top Down Approach: Breaking A Programming
Problem Down Into Parts (Functions)

Calculate Interest

Get information Do calculations Display results

James Tam

Things Needed In Order To Use Functions

•Definition
- Indicating what the function will do when it runs

•Call
- Getting the function to run (executing the function)

Programming: Repetition

James Tam

Functions (Basic Case)

Function call

Function definition

James Tam

Defining A Function

•Format:
def <function name> ():

body

•Example:
def displayInstructions ():

print “Displaying instructions”

Programming: Repetition

James Tam

Calling A Function

•Format:
function name ()

•Example:
displayInstructions ()

James Tam

Functions: An Example That Puts Together All The
Parts Of The Easiest Case

•The full version of this program can be found in UNIX under
/home/231/examples/functions/firstExampleFunction.py

def displayInstructions ():
print "Displaying instructions"

main function
displayInstructions()
print "End of program"

Programming: Repetition

James Tam

Functions: An Example That Puts Together All The
Parts Of The Easiest Case

•The full version of this program can be found in UNIX under
/home/231/examples/functions/firstExampleFunction.py

def displayInstructions ():
print "Displaying instructions"

main function
displayInstructions()
print "End of program"

Function
definition

Function call

James Tam

Functions Should Be Defined Before They Can Be
Called!

•Correct ☺
def fun ():

print "Works"

main
fun ()

•Incorrect
fun ()

def fun ():
print "Doesn't work"

Function
definition

Function
call

Function
definition

Function
call

Programming: Repetition

James Tam

Another Common Mistake

•Forgetting the brackets during the function call:

def fun ():
print “In fun”

Main function
print “In main”
fun

James Tam

Another Common Mistake

•Forgetting the brackets during the function call:

def fun ():
print “In fun”

Main function
print “In main”
fun ()

The missing set
of brackets
does not
produce a
translation error

Programming: Repetition

James Tam

Another Problem: Creating ‘Empty’ Functions

def fun ():

Main
fun()

Problem: This statement
appears to be a part of the
body of the function but it is
not indented???!!!

James Tam

Another Problem: Creating ‘Empty’ Functions (2)

def fun ():
print

Main
fun()

A function
must have
at least one
statement

Programming: Repetition

James Tam

•Variables are memory locations that are used for the temporary
storage of information.

num = 0

•Each variable uses up a portion of memory, if the program is
large then many variables may have to be declared (a lot of
memory may have to be allocated to store the contents of
variables).

What You Know: Declaring Variables

0num
RAM

RAM

Champions

James Tam

What You Will Learn: Using Variables That Are
Local To A Function

•To minimize the amount of memory that is used to store the contents of
variables only declare variables when they are needed.

•When the memory for a variable is no longer needed it can be ‘freed up’ and
reused.

•To set up your program so that memory for variables is only allocated
(reserved in memory) as needed and de-allocated when they are not (the
memory is free up) variables should be declared locally to a function.

Function call (local variables
get allocated in memory)

The program code in the function executes (the
variables are used to store information for the
function)

Function ends (local variables
get de-allocated in memory)

Programming: Repetition

James Tam

Where To Create Local Variables

def <function name> ():

Example:
def fun ():

num1 = 1
num2 = 2

Somewhere within
the body of the
function (indented
part)

James Tam

Working With Local Variables: Putting It All
Together

•The full version of this example can be found in UNIX under
/home/231/examples/functions/secondExampleFunction.py

def fun ():
num1 = 1
num2 = 2
print num1, " ", num2

Main function
fun()

Programming: Repetition

James Tam

Working With Local Variables: Putting It All
Together

•The full version of this example can be found in UNIX under
/home/231/examples/functions/secondExampleFunction.py

def fun ():
num1 = 1
num2 = 2
print num1, " ", num2

Main function
fun()

Variables that
are local to
function fun

James Tam

Problem: Local Variables Only Exist Inside A
Function

def display ():
print ""
print "Celsius value: ", celsius
print "Fahrenheit value :", fahrenheit

def convert ():
celsius = input ("Type in the celsius temperature: ")
fahrenheit = celsius * (9 / 5) + 32
display ()

Variables celsius
and fahrenheit are
local to function
‘convert’

What is ‘celsius’???
What is ‘fahrenheit’???

Programming: Repetition

James Tam

Solution: Parameter Passing

•Variables exist only inside the memory of a function:

convert

celsius

fahrenheit

Parameter passing:
communicating information
about local variables into a
functiondisplay

Celsius? I know that value!

Fahrenheit? I know that value!

James Tam

Parameter Passing (Function Definition)

•Format:
def <function name> (<parameter 1>, <parameter 2>...):

•Example:
def display (celsius, fahrenheit):

Programming: Repetition

James Tam

Parameter Passing (Function Call)

•Format:
<function name> (<parameter 1>, <parameter 2>...)

•Example:
display (celsius, fahrenheit):

James Tam

Parameter Passing: Putting It All Together

•The full version of this program can be found in UNIX under
/home/231/examples/functions/temperature.py

def introduction ():
print """

Celsius to Fahrenheit converter

This program will convert a given Celsius temperature to an equivalent
Fahrenheit value.

"""

Programming: Repetition

James Tam

Parameter Passing: Putting It All Together (2)

def display (celsius, fahrenheit):
print ""
print "Celsius value: ", celsius
print "Fahrenheit value:", fahrenheit

def convert ():
celsius = input ("Type in the celsius temperature: ")
fahrenheit = celsius * (9 / 5) + 32
display (celsius, fahrenheit)

Main function
introduction ()
convert ()

James Tam

New Problem: Results That Are Derived In One
Function Only Exist In That Function

def calculateInterest (principle, rate, time):

interest = principle * rate * time

main

principle = 100

rate = 0.1

time = 5

calculateInterest (principle, rate, time)

print “Interest earned $”, interest

Stored locally
interest = 50

Problem:

Value stored in
interest cannot be
accessed here

Programming: Repetition

James Tam

Solution: Have Function Return Values Back
To The Caller

def calculateInterest (principle, rate, time):

interest = principle * rate * time

return interest

main

principle = 100

rate = 0.1

time = 5

interest = calculateInterest (principle, rate, time)

print “Interest earned $”, interest

Variable
‘interest’ is local
to the function.

The value stored in the
variable ‘interest’ local
to ‘calculateInterest’ is
passed back and stored
in a variable that is local
to the main function.

James Tam

Using Return Values

•Format (Single value returned):
return <value returned> # Function definition
<variable name> = <function name> () # Function call

•Example (Single value returned):
return interest # Function definition

interest = calculateInterest (principle, rate, time) # Function call

Programming: Repetition

James Tam

Using Return Values

•Format (Multiple values returned):
return <value1>, <value 2>... # Function definition
<variable 1>, <variable 2>... = <function name> () # Function call

•Example (Multiple values returned):
return principle, rate, time # Function definition

principle, rate, time = getInputs (principle, rate, time) # Function call

James Tam

Using Return Values: Putting It All Together

•The full version of this program can be found in UNIX under
/home/231/examples/functions/interest.py

def introduction ():
print """

Simple interest calculator

With given values for the principle, rate and time period this program
will calculate the interest accrued as well as the new amount (principle
plus interest).

"""

Programming: Repetition

James Tam

Using Return Values: Putting It All Together (2)

def getInputs (principle, rate, time):
principle = input("Enter the original principle: ")
rate = input("Enter the yearly interest rate %")
rate = rate / 100.0
time = input("Enter the number of years that money will be invested: ")
return principle, rate, time

def calculate (principle, rate, time, interest, amount):
interest = principle * rate * time
amount = principle + interest
return interest, amount

James Tam

Using Return Values: Putting It All Together (3)

def display (principle, rate, time, interest, amount):
temp = rate * 100
print ""
print "With an investment of $", principle, " at a rate of", temp, "%",
print " over", time, " years..."
print "Interest accrued $", interest
print "Amount in your account $", amount

Programming: Repetition

James Tam

Using Return Values: Putting It All Together (4)

Main function
principle = 0
rate = 0
time = 0
interest = 0
amount = 0

introduction ()
principle, rate, time = getInputs (principle, rate, time)
interest, amount = calculate (principle, rate, time, interest, amount)
display (principle, rate, time, interest, amount)

James Tam

Testing Functions

•This is an integral part of the top down approach to designing
programs.

•Recall with the top down approach:
1. Outline the structure of different parts of the program without

implementing the details of each part (i.e., specify what functions that
the program must consist of but don’t write the code for the functions
yet).

Calculate Interest

Get information Do calculations Display results

Programming: Repetition

James Tam

Testing Functions

2. Implement the body of each function, one-at-a-time.

Get information
def getInput (principle, rate, time):

principle = input (“Enter the principle: “)
rate = input("Enter the yearly interest rate %")
rate = rate / 100.0
time = input("Enter the number of years the

money will be invested: ")
return principle, rate, time

Calculate Interest

Get information Do calculations Display results

James Tam

Testing Functions

2. As each function has been written test each one to check for errors.

Get information
def getInput (principle, rate, time):

: :
return principle, rate, time

main
principle, rate, time = getInput (principle, rate, time)
print “principle”, principle
print “rate”, rate
print “time”, time

Programming: Repetition

James Tam

Testing Functions

2. As each function has been written test each one to check for errors.

Calculate Interest

Get information Do calculations Display results

Do calculations
def calculate (principle, rate, time, interest,

amount):
interest = principle * rate * time
amount = principle + interest
return interest, amount

James Tam

Testing Functions

2. As each function has been written test each one to check for errors.

Do calculations
def calculate (principle, rate, time, interest,

amount):
interest = principle * rate * time
amount = principle + interest
return interest, amount # 0, 0

main
Test case 1: Interest = 0, Amount = 0
interest, amount = calculate (0, 0, 0, interest, amount)
print “interest”, interest, ‘ ‘, “amount”, amount

Test case 2: Interest = 50, Amount = 150
interest, amount = calculate (100, 0.1, 5, interest, amount)
print “interest”, interest, ‘ ‘, “amount”, amount

Programming: Repetition

James Tam

Testing Functions

2. As each function has been written test each one to check for errors.

Do calculations
def calculate (principle, rate, time, interest,

amount):
interest = principle * rate * time
amount = principle + interest
return interest, amount # 50, 150

main
Test case 1: Interest = 0, Amount = 0
interest, amount = calculate (0, 0, 0, interest, amount)
print “interest”, interest, ‘ ‘, “amount”, amount

Test case 2: Interest = 50, Amount = 150
interest, amount = calculate (100, 0.1, 5, interest, amount)
print “interest”, interest, ‘ ‘, “amount”, amount

James Tam

The Type And Number Of Parameters Must Match!

•Correct ☺:
def fun1 (num1, num2):

print num1, num2

def fun2 (num1, str1):
print num1, str1

main
num1 = 1
num2 = 2
str1 = "hello"

fun1 (num1, num2)
fun2 (num1, str1)

Two numeric
parameters are
passed into the call
for ‘fun1’ which
matches the two
parameters listed in
the definition for
function ‘fun1’

Two parameters (a
number and a string)
are passed into the
call for ‘fun2’ which
matches the type for
the two parameters
listed in the definition
for function ‘fun2’

Programming: Repetition

James Tam

Another Common Mistake: The Parameters
Don’t Match

•Incorrect :
def fun1 (num1):

print num1, num2

def fun2 (num1, num2):
num1 = num2 + 1
print num1, num2

main
num1 = 1
num2 = 2
str1 = "hello"

fun1 (num1, num2)
fun2 (num1, str1)

Two numeric
parameters are
passed into the call
for ‘fun1’ but only one
parameter is listed in
the definition for
function ‘fun1’

Two parameters (a
number and a string)
are passed into the
call for ‘fun2’ but in the
definition of the
function it’s expected
that both parameters
are numeric.

James Tam

Program Design: Finding The Candidate Functions

• The process of going from a problem description (words that
describe what a program is supposed to do) to writing a
program.

• The first step is to look at verbs either directly in the problem
description (indicates what actions should the program be
capable of) or those which can be inferred from the problem
description.

• Each action may be implemented as a function but complex
actions may have to be decomposed further into several
functions.

Programming: Repetition

James Tam

Rules Of Thumb For Defining Functions

1. Each function should have one well defined task. If it doesn’t
then it may have to be decomposed into multiple sub-
functions.
a) Clear function: A function that converts lower case input to capitals.
b) Ambiguous function: A function that prompts for a string and then

converts that string to upper case.

2. Try to avoid writing functions that are longer than one screen
in size (again this is just a rule of thumb or guideline!)

James Tam

Program Design: An Example Problem

•(Paraphrased from the book “Pascal: An introduction to the Art
and Science of Programming” by Walter J. Savitch.

Problem statement:

Design a program to make change. Given an amount of money, the
program will indicate how many quarters, dimes and pennies are needed.
The cashier is able to determine the change needed for values of a dollar
or less.

Actions that may be needed:

•Action 1: Prompting for the amount of money

•Action 2: Computing the combination of coins needed to equal this
amount

•Action 3: Output: Display the number of coins needed

Programming: Repetition

James Tam

Program Design: An Example Problem

• However Action 2 (computing change) is still complex and may require
further decomposition into sub-actions.

• One sensible decomposition is:
- Sub-action 2A: Compute the number of quarters to be given out.
- Sub-action 2B: Compute the number of dimes to be given out.
- Sub-action 2C: Compute the number of pennies to be given out.

• Rules of thumb for designing functions:
1. Each function should have one well defined task. If it doesn’t then it may

have to be decomposed into multiple sub-functions.
a) Clear function: A function that prompts the user to enter the amount of money.
b) Ambiguous function: A function that prompts for the amount of money and

computes the number of quarters to be given as change.
2. Try to avoid writing functions that are longer than one screen in size (again

this is just a rule of thumb or guideline!)

James Tam

Determining What Information Needs To Be
Tracked

1. Amount of change to be returned
2. Number of quarters to be given as change
3. Number of dimes to be given as change
4. Number pennies to be given as change
5. The remaining amount of change still left (the value updates

or changes as quarters, dimes and pennies are given out)

Programming: Repetition

James Tam

Outline Of The Program

inputAmount
(Design and
test #2)

Change program (main)
(Design & test #1)

computeChange
(Design and test
#3)

outputCoins
(Design and test
#4)

ComputeQuarters
(Design & test #5)

ComputeDimes
(Design & test #6)

ComputePennies
(Design & test #7)

James Tam

First Implement Functions As Skeletons/Stubs

•After laying out a design for your program write functions as
skeletons/stubs.

•(Don’t type them all in at once).
•Skeleton function:

- It’s a outline of a function with a bare minimum amount that is needed to
translate to machine (keywords required, function name, a statement to
define the body – return values and parameters may or may not be
included in the skeleton).

Programming: Repetition

James Tam

Code Skeleton: Change Maker Program

def inputAmount (amount):
return amount

def computeQuarters (amount, amountLeft, quarters):
return amountLeft, quarters

def computeDimes (amountLeft, dimes):
return amountLeft, dimes

def computePennies (amountLeft, pennies):
return pennies

def computeChange (amount, quarters, dimes, pennies):
amountLeft = 0
return quarters, dimes, pennies

def outputCoins (amount, quarters, dimes, pennies):
print ""

James Tam

Code Skeleton: Change Maker Program (2)

MAIN FUNCTION
amount = 0
quarters = 0
dimes = 0
pennies = 0

Programming: Repetition

James Tam

How To Come With An Algorithm/Solution

•An algorithm is the series of steps (not necessarily linear!) that
provide the solution to your problem.

•If there is a physical analogy to the problem then try visualizing
the problem using real world objects or scenarios.
- E.g., Write a program that implements some rudimentary artificial
intelligence. The program is a game that takes place on a 2D grid. The
human player tries to find the exit and the computer controlled opponent
tries to chase the human player.

The
‘Fellowship’:
human
controlled

The ‘Balrog’:
computer
controlled

The exit

James Tam

How To Come With An Algorithm/Solution (2)

•If the problem is more abstract and you may be unable to come
with the general solution for the program.

•Try working out a solution for a particular example and see if
that solution can be extended from that specific case to a more
generalized formula.

Programming: Repetition

James Tam

Where To Declare Your Variables?

inputAmount

Change program (main)

computeChange outputCoins

ComputeQuarters ComputeDimes ComputePennies

•Amount?
•Quarters?
•Dimes?
•Pennies?
•Amount left?

James Tam

Where To Declare Your Variables?

inputAmount

Change program (main)

computeChange outputCoins

ComputeQuarters ComputeDimes ComputePennies

•Amount?
•Quarters?
•Dimes?
•Pennies?

•AmountLeft?

t7

Slide 60

t7 Try to help more with design:
For each module try to figure out what do we need to know going in and what do we need to know
coming out

Remove the desing and test here (move it to just before slide no. 56 (design and test but greyed out).

Also show design and test with alternative order that's also valid.
tamj, 3/28/2008

Programming: Repetition

James Tam

Implementing And Testing Input Functions

Function definition
def inputAmount (amount):

amount = input ("Enter an amount of change from 1 to 99 cents: ")
return amount

Testing the function definition
amount = inputAmount (amount)
print “amount:”, amount

Test that your
inputs were read
in correctly
DON’T ASSUME
that they were!

James Tam

Implementing And Testing The Compute Functions

inputAmount
(Design and
test #2)

Change program (main)
(Design & test #1)

computeChange
(Design and test
#3)

outputCoins
(Design and test
#4)

ComputeQuarters
(Design & test #5)

ComputeDimes
(Design & test
#6)

ComputePennies
(Design & test #7)

Programming: Repetition

James Tam

Implementing And Testing ComputeQuarters

Function definition
def computeQuarters (amount, amountLeft, quarters):

quarters = amount / 25
amountLeft = amount % 25
return amountLeft, quarters

Function test
amount = 0;
amountLeft = 0
quarters = 0
amount = input (“Enter amount: “)
amountLeft, quarters = computeQuarters (amount, amountLeft, quarters)
print “Amount:”, amount
print “Amount left:”, amountLeft
print “Quarters:”, quarters

Check the program
calculations against
some hand
calculations.

James Tam

•The scope of an identifier (variable, constant) is where it may be
accessed and used.

•Example:
def fun1 ():

num = 10
:

print num

def fun2 ():
:

main
:

Functions And Scope

‘num’ comes into
scope (is visible
and can be used)

(End of function): num
goes out of scope, no
longer accessible

Programming: Repetition

James Tam

•The scope of an identifier (variable, constant) is where it may be
accessed and used.

•Example:
def fun1 ():

num = 10
:

print num

def fun2 ():
:

main
:

Functions And Scope (2)

Scope of ‘num’

James Tam

•The scope of an identifier (variable, constant) is where it may be
accessed and used.

•Example:
def fun1 ():

num = 10
:

print num

def fun2 ():
print num

main
:

Functions And Scope (3)

Scope of ‘num’

'num' is not defined

Programming: Repetition

James Tam

•The scope of an identifier (variable, constant) is where it may be
accessed and used.

•Example:
def fun1 ():

num = 10
:

print num

def fun2 ():
num = 0
print num

main
:

Getting Around Scope Without Parameters?

Scope of ‘num’

OK let’s define ‘num’

Oh no!...it’s the wrong ‘num’!!!

James Tam

Yet Another Common Mistake:
Not Saving Return Values

•Just because a function returns a value does not automatically
mean the value will be usable by the caller of that function.

def fun ():
return 1

•That is because return values have to be explicitly saved by the
caller of the function.

•Example
def fun ():

length = 4
width = 3
area = length * width

MAIN
area = 0
fun ()
print area

This value has to be stored or used
in some expression by the caller

Fixed MAIN
area = 0
area = fun ()
print area

Programming: Repetition

James Tam

Why Employ Problem Decomposition And Modular
Design

• Drawback
- Complexity – understanding and setting up inter-function

communication may appear daunting at first
- Tracing the program may appear harder as execution appears to “jump”

around between functions.

• Benefit
- Solution is easier to visualize (only one part of a time)
- Easier to test the program (testing all at once increases complexity)
- Easier to maintain (if functions are independent changes in one function

can have a minimal impact on other functions, if the code for a function
is used multiple times then updates only have to made once)

- Less redundancy, smaller program size (especially if the function is
used many times throughout the program).

James Tam

After This Section You Should Now Know

• How to write the definition for a function
- How to write a function call

• How to pass information to and from functions via parameters
and return values

• How and why to declare variables locally
• How to test functions and procedures
• How to design a program from a problem statement

- How to determine what are the candidate functions
- How to determine what variables are needed and where they need to be

declared
- Some approaches for developing simple algorithms (problem solving

techniques)

