

You will learn about the binary number system and how subtractions are performed on the computer.

•Simple: something is either in one state or another.

•All parts of modern computers work this way.

•This two state approach is referred to as *bi*nary (bi = two, for 2 states).

What Is Binary?

•(What you know): Binary is a method of representing information that uses two states.

•(What you may not be aware of): The number system that you are familiar (decimal) uses 10 states to represent information.

Decimal: Summary

- •Base ten
- •Employs ten unique symbols (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
- •Each digit can only take on the value from 0-9
 - Once a column has traversed all ten values then that column resets back to zero (as does it's right hand neighbours) and the column to it's immediate left increases by one.

Binary: Summary

•Base two

•Employs two unique symbols (0 and 1)

- •Each digit can only take on the value 0 or the value 1
 - Once a column has traversed both values then that column resets back to zero (as does it's right hand neighbours) and the column to it's immediate left increases by one.

James Tam

Decimal value	Binary value	Decimal value	Binary value 1000 1001 1010 1011	
0	0000	8		
1	0001	9		
2	0010 0011 0100	10		
3		11		
4		12	1100	
5	0101	13	1101	
6	0110	14	1110	
7	0111	15	11111	

Counting In Binary

Storing Information With Binary

•Text: ASCII represents simple alphanumeric information

<u>8 bits:</u>

1 used for error checking

7 for the alphanumeric information = 128 combinations

•Text: beyond simple English representations

- Arabic, Dutch, Chinese, French, German, Spanish etc.

- Representing this expanded text information uses additional bits:

- 16 bits = 65,536 combinations
- 24 bits = 16,777,216 combinations

Storing Other Information (2)

•Colors: using ~16 million colors can present a 'true life' representation, how are the color combinations encoded?

Binary To Decimal: Other Examples

• $0101.11_2 = ????_{10}$ • $100000_2 = ????_{10}$ • $011111_2 = ????_{10}$

James Tam

Decimal To Binary

Split up the integer and the fractional portions:

- 1) For the integer portion:
- a. Divide the integer portion of the decimal number by two.
- b. The remainder becomes the first integer digit of the number (immediately left of the decimal) in binary.
- c. The quotient becomes the new integer value.
- d. Divide the new integer value by two.
- e. The new remainder becomes the second integer digit of the binary number (second digit to the left of the decimal).
- f. Continue dividing until the quotient is less than two and this quotient becomes the last integer digit of the binary number.

Decimal To Binary: Other Examples

•5.75₁₀ = ????₂ •32₁₀ = ????₂ •31₁₀ = ????₂

		(0 2010)			
Binary (1 bit)	Value	Binary (2 bits)	Value	Binary (3 bits)	Value
)	0	00	0	000	0
l	1	01	1	001	1
)	0	10	2	010	2
1	1	11	3	011	3
		00	0	100	4
	•	01	1	101	5
		10	1	110	6
		10	2	111	7
		11	3	000	0
		:	:	001	1
					•
					:

Overflow: Morale

- •Regardless of the number of bits used to represent a number there always exists the possibility of an incorrect result due to overflow.
- •Understanding how overflow works will help you determine where the errors may exist in your program and what is causing them.

Subtraction

In the real world A - B
In the computer A - B

Binary Subtraction

- •Requires the complementing of a binary number -i.e., A – B becomes A + (-B)
- •The complementing can be performed by representing the negative number as a twos complement value.

<u>Complementing Binary Using The Twos</u> Complement Representation

For positive values there is no difference (no change is needed)

e.g., positive seven (The 'A' in the expression A – B)
0111 (regular binary)

0111 (Twos complement equivalent)

For negative values complement the number by negating the number: reversing (flipping) the bits (i.e., a 0 becomes 1 and 1 becomes 0) and adding one to the result.

e.g., minus six (The 'B' in the expression A – B becomes A+(-B))
0110 (regular binary)

1010 (Twos complement equivalent)

Interpreting The Bit Pattern: Complements

•Recall:

- Positive values remain unchanged:
- •0110 is the same value with both representations.
- Negative values are converted through complementing:
 - Twos complement: negate the bits and add one -0110 becomes 1010
- •Problem: the sign must be retained (complements don't use a minus sign).
- •Approach:
 - One bit (most significant bit/MSB or the signed bit) is used to indicate the sign of the number.
 - This bit cannot be used to represent the magnitude (size) of the number
 - If the MSB equals 0, then the number is positive
 - •e.g. 0 bbb is a positive number (bbb stands for a binary number)
 - If the MSB equals 1, then the number is negative
 - •e.g. 1 bbb is a negative number (bbb stands for a binary number)

	·	
	Positive values are represented with:	Negative values are represented with:
Regular binary	No explicit symbol is needed (rarely is a plus '+' used) e.g., 100 vs. +100	A minus '-' sign e.g., -100
Twos complement	The sign bit (MSB) is zero e.g., 0 11	The sign bit (MSB) is one e.g., 100

What You Already Should Know

•How to convert from decimal to binary.

•How to convert from binary to decimal.

James Tam

What You Will Learn

•How to subtract numbers with the complement and add technique:

The operation A - B is performed as A + (-B)

Occurs (wraps	when yo around	Uverflow: u don't hav	e enough b	r Binary oits to repres	ent a value
Binary (1 bit)	Value	Binary (2 bits)	Value	Binary (3 bits)	Value
0	0	00	0	000	0
1	1	01	1	001	1
0	0	10	2	010	2
:	:	11	3	011	3
		00	0	100	4
		:	:	101	5
				110	6
				111	7
				000	0
				:	:

Overflow: Signed

•In all cases it occurs do to a "shortage of bits".

•Subtraction – subtracting two negative numbers results in a positive number.

e.g. - 7 - <u>1</u> + 7 •Addition – adding two positive numbers results in a negative number. e.g. 7 + <u>1</u> - 8

James Tam

After This Section You Should Now Know

•How binary plays a role in the operation of a computer

•How the binary number system works

•How to convert between decimal and binary

•Binary addition

•Binary subtraction via the complement and add technique

•How signed and unsigned overflow work