
CPSC 219: Introduction to Object-Oriented programming

James Tam

Introduction To Object-Oriented
Programming

This section includes introductions to
fundamental object-oriented principles such as
information hiding, overloading, relationships
between classes as well the object-oriented
approach to design.

James Tam

Reminder: What You Know

•There are different paradigms (approaches) to implementing
computer programs.

•There are several different paradigms but the two you have been
introduced to thus far:
- Procedural
- Object-Oriented.

CPSC 219: Introduction to Object-Oriented programming

James Tam

An Example Of The Procedural Approach

•Break down the program by what it does (described with
actions/verbs)

File Edit Help…

Creating
new

document

Opening a
document

Saving a
document

… Exiting
program

PowerPoint

James Tam

An Example Of The Object-Oriented Approach

•Break down the program into ‘physical’ components (nouns)

•Dragon•Knight

•Screamer•Ghost

•Mummy•Scorpion

Monsters

•Mace•Longbow

•Rapier•Broadsword

Weapons

Dungeon Master

CPSC 219: Introduction to Object-Oriented programming

James Tam

Example Objects: Monsters From Dungeon Master

•Dragon

•Scorpion

•Couatl

James Tam

Ways Of Describing A Monster

What can
the dragon
do?
(Behaviors)

What
information can
be used to
describe the
dragon?
(Attributes)

CPSC 219: Introduction to Object-Oriented programming

James Tam

Monsters: Attributes

•Represents information about the monster:
-Name
-Damage it inflicts
-Damage it can sustain
-Speed

:

James Tam

Monsters: Behaviours

• Represents what each monster can do (verb part):

• Dragon

• Scorpion

Stinger

CPSC 219: Introduction to Object-Oriented programming

James Tam

Monsters: Operations

•Couatl

Serpent
(poison)

Wings

James Tam

C Structs Vs. Java Objects

Composite type (Structs)

Information (attributes)

• Information about the
variable.

18’

25’

CPSC 219: Introduction to Object-Oriented programming

James Tam

C Structs Vs. Java Objects

Composite type (Objects)

Information (attributes)

• Information about the
variable.

Operations (methods1)

• What the variable “can
do”

1 A method is another name for a function in Java

18’

25’

James Tam

One Benefit Of Bundling Behaviors With Objects

•It can be more logical to bundle into the definition of composite
type what each instance can do rather than implementing that
function/method elsewhere.

typedef struct

{

} Dragon;

: :

void fly (Dragon a)

{

:

}

Non-Object-Oriented
Approach

public class Dragon

{

private int height;

private int weight;

public void fly ()

{

:

}

}

Object-Oriented
Approach

CPSC 219: Introduction to Object-Oriented programming

James Tam

Working With Objects In Java

I. Define the class
II. Create an instance of the class (instantiate an object)
III. Using the different parts of an object (data and methods)

James Tam

I) Defining A Java Class

Format:
public class <name of class>
{

instance fields/attributes
instance methods

}

Example:
public class Person
{

// Define instance fields
// Define instance methods

}

CPSC 219: Introduction to Object-Oriented programming

James Tam

Defining A Java Class (2)

Format of instance fields:
<access modifier>1 <type of the field> <name of the field>;

•Example of defining instance fields:
public class Person
{

private int age;
}

1) Can be public or private but typically instance fields are private

2) Valid return types include the simple types (e.g., int, char etc.), predefined classes (e.g., String) or
new classes that you have defined in your program. A method that returns nothing has a return type
of “void”.

James Tam

Defining A Java Class (3)

Format of instance methods:
<access modifier>1 <return type2> <method name> (<p1 type> <p1
name>…)
{

<Body of the method>
}

Example of an instance method:
public class Person
{

public void fun (int num)
{

System.out.println (num);
}

}
1) Can be public or private but typically instance methods are public

2) Valid return types include the simple types (e.g., int, char etc.), predefined classes (e.g., String) or
new classes that you have defined in your program. A method that returns nothing has return type of
“void”.

CPSC 219: Introduction to Object-Oriented programming

James Tam

Defining A Java Class (4)

Example (complete class definition):
public class Person
{

private int age;
public void setAge (int anAge)
{

age = anAge;
}
public int getAge ()
{

return age;
}

}

James Tam

A Class Is Like A Blueprint

•It indicates the format for what an example of the class should
look like (methods and attributes).
•No memory is allocated.

CPSC 219: Introduction to Object-Oriented programming

James Tam

II) Creating/Instantiating Instances Of A Class

Format:
<class name> <instance name> = new <class name> ();

Example:
Person jim = new Person();

•Note: ‘jim’ is not an object of type ‘Person’ but a reference to an object of
type ‘Person’ (more on this later).

James Tam

An Instance Is An Actual Example Of A Class

•Instantiation is when an actual example/instance of a class is
created.

CPSC 219: Introduction to Object-Oriented programming

James Tam

Declaring A Reference Vs. Instantiating An Instance

•Declaring a reference to a ‘Person’
Person jim;

•Instantiating/creating an instance of a ‘Person’
jim = new Person ();

James Tam

III) Using The Parts Of A Class

Format:
<instance name>.<attribute name>;
<instance name>.<method name>(<p1 name>, <p2 name>…);

Example:
int anAge = 27;
Person jim = new Person ();
jim.setAge(anAge);

System.out.println(jim.getAge());

Note: In order to use the dot-operator “.” the instance field or method cannot have a private level of access

CPSC 219: Introduction to Object-Oriented programming

James Tam

Laying Out Your Program

Java program

•The program must contain a ‘Driver’ class (or equivalent).

Driver.java

•The driver class is the place where the program starts running (it contains
the main method).

main ()

{

}

Person.java

•For now you should have all the classes for a particular program
reside in the same directory or folder.

•Instances of other classes can be created and used here.

Person jim = new Person ();

Accesses

James Tam

Laying Out Your Program

•The code for each class should reside in its own separate file.

class Person

{

: :

}

Person.java

class Driver

{

: :

}

Driver.java

CPSC 219: Introduction to Object-Oriented programming

James Tam

Putting It Altogether: First Object-Oriented
Example

•Name of the online example: firstOOExample.zip

public class Driver
{

public static void main (String [] args)
{

int anAge = 27;
Person jim = new Person ();
jim.setAge(anAge);
System.out.println("Jim's current age is..." + jim.getAge());

}
}

James Tam

Putting It Altogether:
First Object-Oriented Example (2)

public class Person
{

private int age;
public void setAge (int anAge)
{

age = anAge;
}
public int getAge ()
{

return age;
}

}

CPSC 219: Introduction to Object-Oriented programming

James Tam

Compilation With Multiple Classes

•In the previous example there were two classes: ‘Driver’ and
‘Person’.

•One way (safest) to compile the program is to compile each
source code (dot-Java) file:
- javac Driver.java
- javac Person.java

•However in this program a method of the Driver class refers to
an instance of class Person.

public static void main (String [] args)
{

Person jim = new Person ();
}

•The Java compiler can detect that this dependency exists.

James Tam

Compilation With Multiple Classes (2)

•The effect in this example is that when the Driver class is
compiled, the code in class Person may also be compiled.
- Typing: “java Driver.java” produces a “Driver.class” file (or produces an
updated compiled version if a byte code file already exists).

- If there is no “Person.class” file then one will be created.
- If a “Person.class” file already exists then an updated version will not be
created (unless you explicitly compile the corresponding source code file).

•Moral of the story: when making changes to multiple source
code (dot-Java files) make sure that you compile each individual
file or at least remove existing byte code (dot-class) files prior
to compilation.

CPSC 219: Introduction to Object-Oriented programming

James Tam

Points To Keep In Mind About The Driver Class

•Contains the only main method of the whole program (where
execution begins)

•Do not instantiate instances of the Driver1

•For now avoid:
- Defining instance fields / attributes for the Driver1

- Defining methods for the Driver (other than the main method)1

1 Details will be provided later in this course

James Tam

UML1 Representation Of A Class

Foo

-num: int

+setNum ()

+getNum ()

<Name of class>
-<attribute name>: <attribute type>

+<method name> ()

1 UML = Unified Modeling Language

CPSC 219: Introduction to Object-Oriented programming

James Tam

Class Diagrams With Increased Details

Foo

-num: int

+setNum (aValue: int):
void

+getNum (): int

<Name of class>
-<attribute name>: <attribute type>

+<method name> (p1: p1type; p2 :
p2 type..): <return type>

2 UML = Unified Modeling Language

James Tam

Why Bother With UML?

•It’s the standard way of specifying the major parts of a software
project.

•It combined a number of different approaches and has become
the standard notation.

CPSC 219: Introduction to Object-Oriented programming

James Tam

Why Represent A Program In Diagrammatic Form?

•Images are better than text for showing structural relations.

Text
Jane is Jim’s boss.

Jim is Joe’s boss.

Anne works for Jane.

Mark works for Jim

Anne is Mary’s boss.

Anne is Mike’s boss.

Structure diagram

Jane

Jim Anne

Joe Mark Mike Mary

James Tam

•Class attributes (variables or constants)
- Declared inside the body of a class definition but outside the body of any
class methods.

- Typically there is a separate attribute for each instance of a class and it
lasts for the life of the object.

•Local variables and constants
- Declared within the body of a class’ method.
- Last for the life of the method

Attributes Vs. Local Variables

class Foo
{

private int num;
}

class Foo
{

public void aMethod () { char ch; }
}

CPSC 219: Introduction to Object-Oriented programming

James Tam

Examples Of An Attribute

public class Person
{

private int age;
public void setAge (int newAge)
{

int aLocal;
age = newAge;

}
:

}
:

main (String [] args)
{

Person jim = new Person ();
Person joe = new Person ();

}

“age”: Declared
within the definition
of a class

James Tam

Examples Of An Attribute

public class Person
{

private int age;
public void setAge (int anAge)
{

int aLocal;
age = anAge;

}
:

}
:

main (String [] args)
{

Person jim = new Person ();
Person joe = new Person ();

}

But declared outside of
the body of a method

CPSC 219: Introduction to Object-Oriented programming

James Tam

Example Of A Local Variable

public class Person
{

private int age;
public void setAge (int anAge)
{

int aLocal;
age = anAge;

}
:

}
:

main (String [] args)
{

Person jim = new Person ();
Person joe = new Person ();
jim.setAge (5);
joe.setAge (10);

}

“aLocal”: Declared
inside the body of a
method

James Tam

Scope Of Local Variables

•Enter into scope
- Just after declaration

•Exit out of scope
- When the corresponding enclosing brace is encountered

public class Bar
{

public void aMethod ()
{

int num1 = 2;
if (num1 % 2 == 0)
{

int num2;
num2 = 2;

}
}

Scope of
num1

CPSC 219: Introduction to Object-Oriented programming

James Tam

Scope Of Local Variables

•Enter into scope
- Just after declaration

•Exit out of scope
- When the proper enclosing brace is encountered

public class Bar
{

public void aMethod ()
{

int num1 = 2;
if (num1 % 2 == 0)
{

int num2;
num2 = 2;

}
}

Scope of num2

James Tam

Scope Of Attributes

public class Bar
{

private int num1;
: :

public void methodOne ()
{

num1 = 1;
num2 = 2;

}
public void methodTwo ()
{

num1 = 10;
num2 = 20;
methodOne ();

}
: :

private int num2;
}

Scope of num1 & num2

CPSC 219: Introduction to Object-Oriented programming

James Tam

Scope Of Methods

public class Bar
{

private int num1;
: :

public void methodOne ()
{

num1 = 1;
num2 = 2;

}
public void methodTwo ()
{

num1 = 10;
num2 = 20;
methodOne ();

}
: :

private int num2;
}

Scope of
methodOne and
methodTwo

James Tam

Referring To Attributes And Methods Outside Of
A Class: An Example

public class Bar
{

public void aMethod ()
{

System.out.println(“Calling aMethod of class Bar”);
}

}

Scope of
aMethod

CPSC 219: Introduction to Object-Oriented programming

James Tam

Referring To Attributes And Methods Outside Of
A Class: An Example

public class Bar
{

public void aMethod ()
{

System.out.println(“Calling aMethod of class Bar”);
}

}

public class Driver
{

public static void main (String [] args)
{

Bar b1 = new Bar ();
Bar b2 = new Bar ();
b1.aMethod();

}
}

Outside the scope (dot
operator is needed)

James Tam

Referring To Attributes And Methods Inside Of A
Class: An Example

public class Foo
{

private int num;
public Foo () { num = 0; }
public void methodOne () { methodTwo(); }
public void methodTwo () { .. }

: : :
}
: :
main ()
{

Foo f1 = new Foo ();
Foo f2 = new Foo ();
f1.methodOne();

}

Call is inside
the scope (no
instance name
or ‘dot’ needed

Call is outside
the scope
(instance name
and ‘dot’ IS
needed

CPSC 219: Introduction to Object-Oriented programming

James Tam

Referring To The Attributes And Methods Of A
Class: Recap

1. Outside the methods of the class you must use the dot-
operator as well as indicating what instance that you are
referring to.
e.g., f1.method();

2. Inside the methods of the class there is no need to use the dot-
operator nor is there a need for an instance name.
e.g.,
public class Foo
{

public void m1 () { m2(); }
public void m2 () { .. }

}

James Tam

Shadowing

One form of shadowing occurs when a variable local to the
method of a class has the same name as an attribute of that class.
- Be careful of accidentally doing this because the wrong identifier could be

accessed.

public class Sheep
{

private String name;
public Sheep (String aName)
{

String name;
name = aName;

}

NO!

CPSC 219: Introduction to Object-Oriented programming

James Tam

Shadowing

Scoping Rules:
1. Look for a local identifier (name of a variable or constant)
2. Look for an attribute

public class Foo
{

// Attributes
public void method ()

{
// Local variables

num = 1;
}

}

A reference to
an identifier

First: Look for a
local identifier
by that name

Second: Look
for an attribute
by that name

James Tam

Encapsulation

•In Java: The ability bundle information (attributes) and behavior
(methods) into a single entity.

•In Java this is done through a class definition.
•Other languages: C (“struct”), C++/Python (“class”), Pascal
(“record”).

CPSC 219: Introduction to Object-Oriented programming

James Tam

Information Hiding

•An important part of Object-Oriented programming and takes
advantage of encapsulation.

•Protects the inner-workings (data) of a class.

•Only allow access to the core of an object in a controlled
fashion (use the public parts to access the private sections).

James Tam

Illustrating The Need For Information Hiding:
An Example

•Creating a new monster: “The Critter”
•Attribute: Height (must be 60” – 72”)

CPSC 219: Introduction to Object-Oriented programming

James Tam

Illustrating The Need For Information Hiding:
An Example

•Creating a new monster: “The Critter”
•Attribute: Height (must be 60” – 72”)

!!!

James Tam

• The public methods can be used to do things such as access or
change the instance fields of the class

Public And Private Parts Of A Class

private
data

public
method

public
method

public
method

set data
(mutator
method)

get data
(accessor
method)

CPSC 219: Introduction to Object-Oriented programming

James Tam

Public And Private Parts Of A Class (2)

• Types of methods that utilize the instance fields:
1) Accessor methods: a ‘get’ method

- Used to determine the current value of a field
- Example:

public int getNum ()
{

return num;
}

2) Mutator methods: a ‘set’ method
- Used to set a field to a new value
- Example:

public void setNum (int aValue)
{

num = aValue;
}

James Tam

How Does Hiding Information Protect The Class?

•Protects the inner-workings (data) of a class
- e.g., range checking for inventory levels (0 – 100)

•The complete example can be found in the directory
/home/courses/219/examples/introductionOO/secondExample

Inventory
+CRITICAL: int

+stockLevel: int

+inventoryTooLow()

Driver

CPSC 219: Introduction to Object-Oriented programming

James Tam

The Inventory Class

public class Inventory
{

public final int CRITICAL = 10;
public int stockLevel;
public boolean inventoryTooLow ()
{

if (stockLevel < CRITICAL)
return true;

else
return false;

}
}

James Tam

The Driver Class

public class Driver
{

public static void main (String [] args)
{

Inventory chinook = new Inventory ();
chinook.stockLevel = 10;
System.out.println ("Stock: " + chinook.stockLevel);
chinook.stockLevel = chinook.stockLevel + 10;
System.out.println ("Stock: " + chinook.stockLevel);
chinook.stockLevel = chinook.stockLevel + 100;
System.out.println ("Stock: " + chinook.stockLevel);
chinook.stockLevel = chinook.stockLevel - 1000;
System.out.println ("Stock: " + chinook.stockLevel);

}
}

CPSC 219: Introduction to Object-Oriented programming

James Tam

Utilizing Information Hiding: An Example

•The name of the online example: secondExampleNoProtection.zip

Driver

+MIN: int

+MAX: int

+CRITICAL: int

-stockLevel: int

+inventoryTooLow()

+add()

+remove()

+showStockLevel()

Inventory

James Tam

The Inventory Class

public class Inventory
{

public final int CRITICAL = 10;
public final int MIN = 0;
public final int MAX = 100;
private int stockLevel = 0;

// Method definitions
public boolean inventoryTooLow ()
{

if (stockLevel < CRITICAL)
return true;

else
return false;

}

CPSC 219: Introduction to Object-Oriented programming

James Tam

The Inventory Class (2)

public void add (int amount)
{

int temp;
temp = stockLevel + amount;
if (temp > MAX)
{

System.out.println();
System.out.print("Adding " + amount + " item will cause stock ");
System.out.println("to become greater than " + MAX + " units

(overstock)");
}
else
{

stockLevel = temp;
}

} // End of method add

James Tam

The Inventory Class (3)

public void remove (int amount)
{

int temp;
temp = stockLevel - amount;
if (temp < MIN)
{

System.out.print("Removing " + amount + " item will cause stock ");
System.out.println("to become less than " + MIN + " units

(understock)");
}
else
{

stockLevel = temp;
}

}

public String showStockLevel () { return("Inventory: " + stockLevel); }
}

CPSC 219: Introduction to Object-Oriented programming

James Tam

The Driver Class

public class Driver
{

public static void main (String [] args)
{

Inventory chinook = new Inventory ();
chinook.add (10);
System.out.println(chinook.showStockLevel ());
chinook.add (10);
System.out.println(chinook.showStockLevel ());
chinook.add (100);
System.out.println(chinook.showStockLevel ());
chinook.remove (21);
System.out.println(chinook.showStockLevel ());
// JT: The statement below won't work and for good reason!
// chinook.stockLevel = -999;

}
}

James Tam

Information Hiding

VERSION I: BAD!!!
public class Inventory
{

public final int CRITICAL = 10;
public int stockLevel;

: :

}

: :
chinook.stockLevel = <value!!!>

VERSION II: BETTER! :D
public class Inventory
{

public final int CRITICAL = 10;
public final int MIN = 0;
public final int MAX = 100;
private int stockLevel = 0;

: :
// mutator and accessors

}
: :
chinook.add (<value>);

Allowing direct access to the attributes of an
object by other programmers is dangerous!!!

Only allow access to
privates attributes via
public mutators and
accessors

CPSC 219: Introduction to Object-Oriented programming

James Tam

Method Overloading

•Same method name but the type, number or order of the
parameters is different (method signature).

•Used for methods that implement similar but not identical tasks.
•Method overloading is regarded as good programming style.
•Example:

System.out.println(int)
System.out.println(double)

etc.
For more details on class System see:
- http://java.sun.com/j2se/1.5.0/docs/api/java/io/PrintStream.html

James Tam

Method Overloading (2)

• Things to avoid when overloading methods
1. Distinguishing methods solely by the order of the parameters.
2. Overloading methods but having an identical implementation.

CPSC 219: Introduction to Object-Oriented programming

James Tam

Method Signatures And Program Design

•Unless there is a compelling reason do not change the signature
of your methods!

Class Foo
{

void fun ()
{

}
}

Before:
Class Foo
{

void fun (int num)
{

}
}

After:

public static void main ()
{

Foo f = new Foo ();
f.fun ()

}

This change
has broken
me!

James Tam

•A method that is used to initialize the attributes of an object as
the objects are instantiated (created).

•The constructor is automatically invoked whenever an instance
of the class is created.

Creating Objects With The Constructor

Constructor

Object

x

y

z

Object

x = 1

y = 2

z = 3

CPSC 219: Introduction to Object-Oriented programming

James Tam

Creating Objects With The Constructor (2)

•If no constructor is specified then the default constructor is
called

-e.g., Sheep jim = new Sheep();

The call to ‘new’ calls the default
constructor (if no constructor
method has been explicitly defined
in the class) as an instance of the
class is instantiated.

James Tam

Writing Your Own Constructor

Format (Note: Constructors have no return type):
public <class name> (<parameters>)
{

// Statements to initialize the fields of the object
}

Example:
public Sheep ()
{

System.out.println("Creating \"No name\" sheep");
name = "No name";

}

CPSC 219: Introduction to Object-Oriented programming

James Tam

Overloading The Constructor

•Similar to other methods, constructors can also be overloaded
•Each version is distinguished by the number, type and order of
the parameters

public Sheep ()
public Sheep (String aName)

James Tam

Constructors: An Example

•The name of the online example:thirdExampleInformationHiding.zip

Driver Sheep
-name: String

+Sheep()

+Sheep(aName: String)

+getName()

+setName(aName: String)

CPSC 219: Introduction to Object-Oriented programming

James Tam

The Sheep Class

public class Sheep
{

private String name;

public Sheep ()
{

System.out.println("Creating \"No name\" sheep");
setName("No name");

}

public Sheep (String aName)
{

System.out.println("Creating the sheep called " + aName);
setName(aName);

}

James Tam

The Sheep Class (2)

public String getName ()
{

return name;
}

public void setName (String aName)
{

name = aName;
}

}

CPSC 219: Introduction to Object-Oriented programming

James Tam

The Driver Class

public class Driver
{

public static void main (String [] args)
{

Sheep nellie;
Sheep jim;
System.out.println();
System.out.println("Creating flock...");
nellie = new Sheep ("Nellie");
jim = new Sheep();
jim.setName("Jim");
System.out.println("Displaying updated flock");
System.out.println(" " + nellie.getName());
System.out.println(" " + jim.getName());
System.out.println();

}
}

James Tam

Association Relations Between Classes

•A relation between classes allows messages to be sent (objects
of one class can call the methods of another class).

Car Engine
+ignite ()

Engine anEngine = new Engine ();
anEngine.ignite ();

CPSC 219: Introduction to Object-Oriented programming

James Tam

Associations Between Classes

•One type of association relationship is a ‘has-a’ relation (also
known as “aggregation”).
- E.g. 1, A car <has-a> engine.
- E.g. 2, A lecture <has-a> student.

•Typically this type of relationship exists between classes when a
class is an attribute of another class.

public class Car
{

private Engine anEngine;
private Lights headLights;
public start ()
{

anEngine.ignite ();
headLights.turnOn ();

}
}

public class Engine
{

public boolean ignite () { .. }
}

public class Lights
{

private boolean isOn;
public void turnOn () { isOn =
true;}

}

James Tam

Directed Associations

•Unidirectional
- The association only goes in one direction.
- You can only navigate from one class to the other (but not the other way
around).

- e.g., You can go from an instance of Car to Lights but not from Lights to
Car, or you can go from an instance of Car to Engine but not from Engine
to Car (previous slide).

CPSC 219: Introduction to Object-Oriented programming

James Tam

Directed Associations (2)

•Bidirectional
- The association goes in both directions
- You can navigate from either class to the other
- e.g.,

public class Student
{

private Lecture [] lectureList = new Lecture [5];
:

}

public class Lecture
{

private Student [] classList = new Student [250];
:

}

James Tam

UML Representation Of Associations

Car Light

Car

Student Lecture

Unidirectional associations

Bidirectional associations

Gasoline

CPSC 219: Introduction to Object-Oriented programming

James Tam

Multiplicity

•It indicates the number of instances that participate in a
relationship

•Also known as cardinality

Any number of instances possible*

Any number of instances in the inclusive range
from “n” to “m”

n..m

Exactly “n” instancesn

Exactly one instance1

DescriptionMultiplicity

James Tam

Multiplicity In UML Class Diagrams

Class 1 Class 2

Number of
instances of
class 1 that
participate in
the relationship

Number of
instances of
class 2 that
participate in
the relationship

CPSC 219: Introduction to Object-Oriented programming

James Tam

Review/New Topic: Hardware

•Computer memory: RAM (Random Access Memory).
•Consists of a number slots that can each store information.

•Normally locations in memory are not accessed via the numeric
addresses but instead through variable names.

Picture from Computers in your future by Pfaffenberger B

RAM
1000 (num1)

1004 (num2)

1008 (num3)

James Tam

Variables: Storing Data Vs. Address

•What you have seen so far are variables that store data.
- Simple types: integers, real numbers, Booleans etc.
- Composite types: arrays, strings etc.

•Other types of variables (e.g., Java variables which appear to be
objects) hold addresses of variables.
Foo aFoo;
aFoo = new Foo ();

- The variable ‘aFoo’ is a reference to an object (contains the address of an
object so it *refers* to an object).

- Dynamic memory allocation: objects are created/instantiated only as
needed.

•De-referencing: using an address to indirectly access data.
•Most times when you access instance variables in Java you
directly access the object through the address of that object but
knowing that an address is involved is important!

CPSC 219: Introduction to Object-Oriented programming

James Tam

Variables: Storing Data Vs. Address (2)

•Even with high-level languages like Java, there will be times
that programs will be working with the numeric address rather
than the variable that the address is referring to.

James Tam

De-Referencing: Java Example

Foo f1 = new Foo ();
Foo f2 = new Foo ();

f1 = f2;

Exactly what is
being copied
here?

CPSC 219: Introduction to Object-Oriented programming

James Tam

Automatic Garbage Collection Of Java References

•Dynamically allocated memory is automatically freed up when
it is no longer referenced

References Dynamic memory

f1(Address of a “Foo”)

f2 (Address of a “Foo”)

Object (Instance of a “Foo”)

Object (Instance of a “Foo”)

James Tam

Automatic Garbage Collection Of
Java References (2)

•Dynamically allocated memory is automatically freed up when
it is no longer referenced e.g., f2 = null;

References Dynamic memory

f1

f2

Object (A “Foo”)

Object (A “Foo”)

null

CPSC 219: Introduction to Object-Oriented programming

James Tam

Automatic Garbage Collection Of
Java References (2)

•Dynamically allocated memory is automatically freed up when
it is no longer referenced e.g., f2 = null; (a null reference means
that the reference refers to nothing, it doesn’t contain an
address).

References Dynamic memory

f1

f2

Object (A “Foo”)

Object (A “Foo”)

null

James Tam

Caution: Not All Languages Provide Automatic
Garbage Collection!

•Some languages do not provide automatic garbage collection
(e.g., C, C++, Pascal).

•In this case dynamically allocated memory must be manually
freed up by the programmer.

•Memory leak: memory that has been dynamically allocated but
has not been freed up after it’s no longer needed.
- Memory leaks are a sign of poor programming style and can result in
significant slowdowns.

CPSC 219: Introduction to Object-Oriented programming

James Tam

The Finalize Method

•Example sequence:
public class Foo
{

int num;
public Foo () { num = 1; }
public Foo (int newValue) { num = newValue; }

: : :
}

: :
Foo f1 = new Foo ();

f1

num 1

James Tam

The Finalize Method

•Example sequence:
public class Foo
{

int num;
public Foo () { num = 1; }
public Foo (int aValue) { num = aValue; }

: : :
}

: :
Foo f1 = new Foo ();
f1 = new Foo (10);

f1

num 1

num 10

CPSC 219: Introduction to Object-Oriented programming

James Tam

The Finalize Method

•Example sequence:
public class Foo
{

int num;
public Foo () { num = 1; }
public Foo (int newValue) { num = newValue; }

: : :
}

: :
Foo f1 = new Foo ();
f1 = new Foo (10);

f1

num 1

num 10

When???

James Tam

The Finalize Method

•Example sequence:
public class Foo
{

int num;
public Foo () { num = 1; }
public Foo (int newValue) { num = newValue; }

: : :
}

: :
Foo f1 = new Foo ();
f1 = new Foo (10);

f1

num 1

num 10

f1.finalize()

CPSC 219: Introduction to Object-Oriented programming

James Tam

The Finalize Method

•Example sequence:
public class Foo
{

int num;
public Foo () { num = 1; }
public Foo (int newValue) { num = newValue; }

: : :
}

: :
Foo f1 = new Foo ();
f1 = new Foo (10);

f1

num 1

num 10

f1.finalize()

James Tam

The Finalize Method

•The Java interpreter tracks what memory has been dynamically
allocated.

•It also tracks when memory is no longer referenced.
•When the system isn’t busy, the Automatic Garbage Collector is
invoked.

•If an object has a finalize method then it is invoked:
- The finalize is a method written by the programmer to free up non-memory
resources e.g., closing and deleting temporary files created by the program,
closing network connections.

- This method takes no arguments and returns no values (i.e., void)
- Dynamic memory is NOT freed up by this method.

•After the finalize method finishes execution, the dynamic
memory is freed up by the Automatic Garbage Collector.

CPSC 219: Introduction to Object-Oriented programming

James Tam

Common Errors When Using References

•Forgetting to initialize the reference
•Using a null reference

James Tam

Error: Forgetting To Initialize The Reference

Foo f;
f.setNum(10); Compilation error!

> javac Driver.java

Driver.java:14: variable f might not have been
initialized

f.setNum(10);

^

1 error

CPSC 219: Introduction to Object-Oriented programming

James Tam

Error: Using Null References

Foo f = null;
f.setNum(10);

Run-time error!
> java Driver

Exception in thread "main"
java.lang.NullPointerException

at Driver.main(Driver.java:14)

James Tam

Self Reference: This Reference

•From every (non-static) method of an object there exists a
reference to the object (called the “this” reference)
e.g.,
Foo f1 = new Foo ();
Foo f2 = new Foo ();
f1.setNum(10);

public class Foo
{

private int num;
public void setNum (int num)
{

num = num;
}

: :
}

CPSC 219: Introduction to Object-Oriented programming

James Tam

Self Reference: This Reference

•From every (non-static) method of an object there exists a
reference to the object (called the “this” reference)
e.g.,
Foo f1 = new Foo ();
Foo f2 = new Foo ();
f1.setNum(10);

public class Foo
{

private int num;
public void setNum (int num)
{

this.num = num;
}
: :

}

Because of the ‘this’
reference, attributes of
an object are always in
scope when executing
that object’s methods.

James Tam

This ()

•It’s an invocation to the constructor of a class.
•It can be used when constructors have been overloaded.

CPSC 219: Introduction to Object-Oriented programming

James Tam

More Of This ()

•Example:
public class Foo
{

private int num1;
private int num2;
public Foo ()
{

num1 = 0;
num2 = 0;

}
public Foo (int n1)
{

this ();
num1 = n1;

}
}

James Tam

After This Section You Should Now Know

•How to define classes, instantiate objects and access different
part of an object

•What is the difference between a class, a reference and an object
•How to represent a class using class diagrams (attributes,
methods and access permissions) and the relationships between
classes

•Scoping rules for attributes, methods and locals
•What is encapsulation and how is it done
•What is information hiding, how is it done and why is it
important to write programs that follow this principle

•What are accessor and mutator methods and how they can be
used in conjunction with information hiding

CPSC 219: Introduction to Object-Oriented programming

James Tam

After This Section You Should Now Know (2)

•What is method overloading and why is this regarded as good
style

•What is a constructor and how is it used
•What is an association, how do directed and non-directed
associations differ, how to represent associations and
multiplicity in UML

•What is multiplicity and what are kinds of multiplicity
relationships exist

