
Programming: problem decomposition into functions

Functions: Redux

A brief discussion of some of the more 
advances topics/issues associated with 

functions.

Lists Are References: Copying Lists

•Recap (list variables are actually references to a list):
- Assigning using just the name of the list just copies the references not the 
data e.g., list1 = list2

- To copy the elements of one list to another a loop is needed to copy each 
successive elements.

•Name of the online example: copy.py

list1 = [1,2,3,4]
list2 = []

for i in range (0, 4, 1):
list2.append(list1[i])

print list1, list2
list1[1] = 99
print list1, list2



Programming: problem decomposition into functions

Passing Simple Types As Parameters: Pass By Value

•Passing integers, floats, Booleans as parameters results in a 
local copy of the parameter being made in the function.

•This parameter passing mechanism is referred to as pass by 
value:
- Mnemonic aid: A copy of the value/data stored in the parameter passed in 

is what’s stored in a local variable of the function that was called.

•The local copy will have the same data as the parameter.
•However the local copy is separate from the parameter so it may 
change independently from the parameter.

•Alternatively: Changes made to the parameter must be returned 
back to the caller in order for the changes to be accessible 
outside of the function.

Passing Simple Types As Parameters: Pass By 
Value (2)

•Name of the online example: parameter1.py

def fun1(x):
x = x + 1

def fun2(x):
x = x + 1
return (x)

def main():
x = 1
print(x)
fun1(x)
print(x)
x = fun2(x)
print(x)

main ()



Programming: problem decomposition into functions

Passing Lists As Parameters: Pass By Reference

•Unlike what you’ve seen with parameter passing so far, 
modifying a list that’s been passed as a parameter to a function 
may modify the original list.

- It all depends upon how the list is accessed in the function.

•When the reference is passed as a parameter to a function a local 
reference also refers to the list.

- The local reference can be reassigned to another list e.g., list1 = list2
- OR
- The local reference can be used to change the original list e.g., list1[1] 

= list2[12]

•This parameter passing mechanism is referred to as pass by 
reference:

- Mnemonic aid: When a parameter is passed by reference there is a
local variable that refers to the original parameter.

Original List Is Changed

•Passing lists into functions is done using a different mechanism
- When a list is passed into the function a local reference variable refers to 
the original list.

•Name of the online example: parameter2.py

def fun (list):
list[0] = 99
print (list)

def main ():
list = [1,2,3]
print (list)
fun (list)
print (list)

main ()



Programming: problem decomposition into functions

Original List Is Unchanged

•If the local reference is assigned to another list then it will 
obviously no longer refer to the original list.

•(Effect: changes made via the local reference will change the 
local list and not the original that was passed into the function).

•Name of the online example: parameter3.py

def fun (list):
list = [3,2,1]
print(list)

def main ():
list = [1,2,3]
print(list)
fun(list)
print(list)

main ()

Parameter Passing: One Last Comprehensive 
Example

•Name of the online example: parameter4.py

def fun1(list1,list2):
list1 = list2
print("During fun1:",list1,list2)

def fun2(aList):
aList = ["Eric","Cart"]
print("During fun2:", aList)



Programming: problem decomposition into functions

Parameter Passing: One Last Comprehensive 
Example (2)

def fun3(list1,list2):
list1[0] = list2[0]
list1[1] = list2[1]
list1[2] = list2[2]
print("During fun3:", list1,list2)
return (list1)

def fun4(list1,list2):
list1[0] = list2[0]
list1[1] = list2[1]
list1[2] = list2[2]
print("During fun4:", list1,list2)

Parameter Passing: One Last Comprehensive 
Example (3)

def main():
print("Changes made in function don't persist (example with parameters)")
list1 = [1,2,3]
list2 = [3,2,1]
print("Before fun1:", list1,list2)
fun1(list1,list2)
print("After fun1:", list1,list2) 
print()

print("Changes made in function don't persist (example with local variable)")
list1 = [1,2,3]
print("Before fun2:", list1)
fun2(list1)
print("After fun2:", list1)
print()



Programming: problem decomposition into functions

Parameter Passing: One Last Comprehensive 
Example (4)

print("Changes made to original list using return value")
list1 = [1,2,3]
list2 = [3,2,1]
print("Before fun3: ", list1,list2)
list1 = fun3(list1,list2)
print("After fun3:", list1,list2)
print()

print("Changes made to original list using reference parameters")
list1 = [1,2,3]
list2 = [3,2,1]
print("Before fun4:", list1,list2)
fun4(list1,list2)
print("After fun4:", list1,list2)

main()

Where To Declare Your Variables

•In a program with many functions it must be determined in 
which function should a variable be created.
- Main calls fun1, fun2, fun3

•Rule of thumb:
- To minimize the potential for side-effects: Do not declare a variable any 
higher in the hierarchy than needed (as low as possible).

•Simple case:
- If a function is only needed in a bottom level function (fun1,2,4,6) then it 
should be declared as local to that function.

main

fun1 fun2 fun3

fun4 fun5 fun6



Programming: problem decomposition into functions

Where To Declare Your Variables (2)

•Other cases:
- If a variable must be passed as a parameter into a function then the variable 
must be declared in the caller of that function.

- Example: fun2 calls fun4

- If a variable in fun2 must be passed as a parameter to fun4, then that 
variable must be created in fun2 (higher if that parameter is passed into 
fun2).

fun2

fun4

Error!
def fun2():

fun4(num)

def fun4(num):
print(num)

OK:
def fun2():

num = 12
fun4(num)

def fun4(num):
print(num)

Example: Where To Declare Your Variables



Programming: problem decomposition into functions

Example: Where To Declare Your Variables (2)

After This Section You Should Now Know

•The difference between pass by reference and pass by value
•When a reference parameter does and does not change the 
original data

•Some guidelines for where you should declare your variables in 
a hierarchy of functions that


