
Programming: Introduction

James Tam

Getting Started With Python
Programming

•Tutorial: creating computer programs
•Variables and constants
•Input and output
•Operators
•Common programming errors
•Formatted output
•Programming style

James Tam

Python

• This is the name of the programming language that will be used to illustrate
different programming concepts this semester:

- My examples will be written in Python
- Your assignments will be written in Python

• Some advantages:
- Free
- Powerful
- Widely used (Google, NASA, Yahoo, Electronic Arts, some UNIX scripts etc.)

• Named after a British comedy

• Official website (Python the programming language, not the Monty Python
comedy troop): http://www.python.org

Monty Python © Monty Python

Programming: Introduction

James Tam

Online Help

•Getting Python (get version 3.X and not version 2.X)
- http://www.python.org/download/

•Example of setting up Python on your computer (it’s not
mandatory to install Python at home, follow these instructions
carefully, missteps occur at your own peril!)
- http://docs.python.org/using/windows.html
- http://docs.python.org/using/unix.html
- http://docs.python.org/using/mac.html

•(Alternate to installing Python at home – SAFER APPROACH).
- Remotely login to the Computer Science network
- Example: Connect using a remote login program such as SSH (Info:
http://pages.cpsc.ucalgary.ca/~tamj/231/starting/ssh.html)

James Tam

Online Help

•(If you have installed Python on your own computer and still
can’t get ‘Python’ to run – it works although it’s a ‘inelegant’
solution)
- Note where you installed Python (folder or directory)
- Create and run your Python programs from this location.

•Explanation of concepts (for beginners: along with examples to
illustrate)
- http://docs.python.org/tutorial/

•General documentation (more advanced):
- http://www.python.org/doc/

Programming: Introduction

James Tam

The Process Of Creating A Computer Program

Program Creation
• A person (programmer) writes a

computer program (series of
instructions).

• The program is written and
saved using a text editor.

• The instructions in the
programming language are high
level (look much like a human
language).

Translation
• A special computer program (translator) translates

the program that was just written by the
programmer into the only form that the computer
can understand (machine language/binary)

Execution
• The machine language

instructions can now be
directly executed by the
computer.

James Tam

Programming: Introduction

James Tam

Location Of My Online Examples

•Finding them via the WWW:
- URL: http://pages.cpsc.ucalgary.ca/~tamj/231/examples/

•Finding them on UNIX when you are logged onto a computer in
the lab:
- Directory: /home/231/examples

•The locations of the example programs that are specific for this
section of notes (each section will have be located in a sub-
directory/sub-link):
- http://pages.cpsc.ucalgary.ca/~tamj/231/examples/intro
- /home/231/examples/intro

James Tam

An Example Python Program

•Program name: small.py

print (“hello”)

Filename: small.py

Programming: Introduction

James Tam

Creating, Translating And Executing Python
Programs (CPSC Network1)

filename.py
(Text file)

Python program
XEmacs

Text editor

python

Python
translator

To begin creating a Python program in
UNIX type "XEmacs filename.py"

To translate and execute the
program in UNIX type “python
filename.py"

Effect of execution:
• Message appears

onscreen

• File is opened

• Etc.
1 The CPSC (Computer Science) network runs on the UNIX operating system.

James Tam

Creating, Translating And Executing The Sample
Program (CPSC Network)

•Creating the program in an editor: Type “emacs/xemacs
small.py”
- A file called “small.py” will be created in your UNIX account.

•Translating and running the program: Type “python
small.py”
- Make sure you type this command in the location (i.e., same directory)
where the Python program (small.py) is located.

Programming: Introduction

James Tam

Creating Programs: Other Operating Systems

•The process is similar:
- You need a text editor (e.g., WordPad, NotePad) to enter the program.
- It can be done using any editor that you, want but don’t use a word
processor (e.g., MS-Word) and remember to save it as a text file.

- Also you need to open a command line to translate/run your Python
program.

James Tam

Creating Programs: Other Operating Systems (2)

•When you translate/run your program in the command window
make sure that you are in the same location as your Python
program (‘inelegant but works’)

•Alternatively you have set up your computer so it ‘knows’
where python has been installed (e.g., setting the ‘path’ in
Windows)

The Python
program is in
another
location.

Programming: Introduction

James Tam

Displaying String Output

•String output: A message appears onscreen that consists of a
series of text characters.

•Whatever is contained with the quotes (single or double) is what
appears onscreen.

•Format:
print (“the message that you wish to appear”)
OR
print (‘the message that you wish to appear’)

•Example:
print (“foo”)
print (‘bar’)

James Tam

Variables

•Set aside a location in memory.
•Used to store information (temporary).

- This location can store one ‘piece’ of information.
- At most the information will be accessible as long as the program runs.

•Some of the types of information which can be stored in
variables:
Format:
<name of variable> = <Information to be stored in the variable>

Examples:
- Integer (e.g., num1 = 10)
- Floating point (e.g., num2 = 10.0)
- Strings (e.g., name = “james”)

Picture from Computers in your future by Pfaffenberger B

Programming: Introduction

James Tam

Variable Naming Conventions

-Style requirement: The name should be meaningful.
-Style and Python requirement: Names must start with a letter
(Python requirement) and should not begin with an underscore
(style requirement).

-Python requirement: Can't be a keyword (see next slide).
-Style requirement: Names are case sensitive but avoid
distinguishing variable names only by case.

-Style requirement: Variable names should generally be all
lower case.

-Style requirement: For variable names composed of multiple
words separate each word by capitalizing the first letter of
each word (save for the first word) or by using an underscore.
(Either approach is acceptable but be consistent!)

James Tam

Key Words In Python1

and del from not while
as elif global or with
assert else if pass yield
break except import print
class exec in raise
continue finally is return
def for lambda try

1 From “Starting out with Python” by Tony Gaddis

Programming: Introduction

James Tam

Named Constants

•They are similar to variables: a memory location that’s been
given a name.

•Unlike variables their contents shouldn’t change.
•The naming conventions for choosing variable names generally
apply to constants but the name of constants should be all
UPPER CASE. (You can separate multiple words with an
underscore).

•They are capitalized so the reader of the program can
distinguish them from variables.
- For some programming languages the translator will enforce the

unchanging nature of the constant.
- For languages such as Python it is up to the programmer to recognize a

constant for what it is and not to change it.

James Tam

Terminology: Named Constants Vs. Literals

•Named constant: given an explicit name
- TAX_RATE = 0.2
- afterTax = income – (income * TAX_RATE)

•Literal/unnamed constant/magic number: not given a name, the
value that you see is literally the value that you have.
- afterTax = 100000 – (100000 * 0.2)

Programming: Introduction

James Tam

Terminology: Named Constants Vs. Literals

•Named constant: given an explicit name
- TAX_RATE = 0.2
- afterTax = income – (income * TAX_RATE)

•Literal/unnamed constant/magic number: not given a name, the
value that you see is literally the value that you have.
- afterTax = 100000 – (100000 * 0.2)

Named
constants

Literals

James Tam

Why Use Named Constants

1. They make your program easier to read and understand
populationChange = (0.1758 – 0.1257) * currentPopulation;

Vs.

BIRTH_RATE = 17.58
MORTALITY_RATE = 0.1257
currentPopulation = 1000000
populationChange = (BIRTH_RATE - MORTALITY_RATE) *

currentPopulation

In this case the
literals are
Magic Numbers
(avoid whenever
possible!)

Programming: Introduction

James Tam

Why Use Named Constants (2)

•2) Makes the program easier to maintain
• If the constant is referred to several times throughout the program,

changing the value of the constant once will change it throughout the
program.

James Tam

Purpose Of Named Constants (3)

BIRTH_RATE = 0.1758
MORTALITY_RATE = 0.1257
populationChange = 0
currentPopulation = 1000000
populationChange = (BIRTH_RATE - MORTALITY_RATE) * currentPopulation
if (populationChange > 0):

print "Increase"
print "Birth rate:", BIRTH_RATE, " Mortality rate:", MORTALITY_RATE, " Population

change:", populationChange
elif (populationChange < 0):

print "Decrease"
print "Birth rate:", BIRTH_RATE, " Mortality rate:", MORTALITY_RATE, "Population

change:", populationChange
else:

print "No change"
print "Birth rate:", BIRTH_RATE, " Mortality rate:", MORTALITY_RATE, "Population

change:", populationChange

Programming: Introduction

James Tam

Purpose Of Named Constants (3)

BIRTH_RATE = 0.8
MORTALITY_RATE = 0.1257
populationChange = 0
currentPopulation = 1000000
populationChange = (BIRTH_RATE - MORTALITY_RATE) * currentPopulation
if (populationChange > 0):

print "Increase"
print "Birth rate:", BIRTH_RATE, " Mortality rate:", MORTALITY_RATE, " Population

change:", populationChange
elif (populationChange < 0):

print "Decrease"
print "Birth rate:", BIRTH_RATE, " Mortality rate:", MORTALITY_RATE, "Population

change:", populationChange
else:

print "No change"
print "Birth rate:", BIRTH_RATE, " Mortality rate:", MORTALITY_RATE, "Population

change:", populationChange

One change in the
initialization of the
constant changes every
reference to that
constant

James Tam

Purpose Of Named Constants (4)

BIRTH_RATE = 0.1758
MORTALITY_RATE = 0.01
populationChange = 0
currentPopulation = 1000000
populationChange = (BIRTH_RATE - MORTALITY_RATE) * currentPopulation
if (populationChange > 0):

print "Increase"
print "Birth rate:", BIRTH_RATE, " Mortality rate:", MORTALITY_RATE, " Population

change:", populationChange
elif (populationChange < 0):

print "Decrease"
print "Birth rate:", BIRTH_RATE, " Mortality rate:", MORTALITY_RATE, "Population

change:", populationChange
else:

print "No change"
print "Birth rate:", BIRTH_RATE, " Mortality rate:", MORTALITY_RATE, "Population

change:", populationChange

One change in the
initialization of the
constant changes every
reference to that
constant

Programming: Introduction

James Tam

Reminder: Named Constants And Python

•Using named constants is regarded as “good” style when writing
a computer program.

•Some programming languages have a mechanism for ensuring
that named constants do not change.

•Example:
MY_CONSTANT = 100
MY_CONSTANT = 12

•Reminder: Python does not enforce the unchanging nature of
constants so it is up to the person writing/modifying the
program to avoid changing the value stored in a constant.

With programming languages that enforce the rule
that constants can’t change this would result in an
error

James Tam

When To Use A Named Constant?

•(Rule of thumb): If you can assign a descriptive useful, self-
explanatory name to a constant then you probably should.

•Example 1:
- INCH_CENTIMETER_RATIO = 2.54
- height = height * INCH_CENTIMETER_RATIO

•Example 2:
- Calories used = (10 x weight) + (6.25 x height) - [(5 x age) - 161]

Programming: Introduction

James Tam

Output: Displaying The Contents Of Variables And
Constants

•Format:
print (<variable name>)
print (<constant name>)

•Example:
Program name: output1.py

aNum = 10
A_CONSTANT = 10
print (aNum)
print (A_CONSTANT)

James Tam

Mixed Output

•Mixed output: getting string output and the contents of variables
(or constants) to appear together.

•Format:
print (“string”, <variable or constant>, “string”, <variable or constant> etc.)

•Examples:
Program name: output2.py

myInteger = 10
myReal = 10.5
myString = "hello"

print ("MyInteger:" , myInteger)
print ("MyReal:" , myReal)
print ("MyString:" , myString)

The comma signals to the
translator that the string and
the contents of the variable
should appear on the same line.

Programming: Introduction

James Tam

Output: Problems

•Sometimes Python automatically adds additional newline
•Name of example: output3.py

year = 1997
print ("year=“)
print (year)

print ("year=", year)

Label and variable
contents on different lines

Label and variable
contents on the same line

James Tam

Arithmetic Operators

num = 7Assignment=

num = 9 ** 2Exponent**

num = 8 % 3Modulo%

num = 25 / 5Division/

num = 5 * 4 Multiplication*

num = 6 - 4Subtraction-

num = 2 + 2Addition+

ExampleDescriptionOperator

Programming: Introduction

James Tam

Order Of Operation

•First level of precedence: top to bottom
•Second level of precedence

- If there are multiple operations that are on the same level then precedence
goes from left to right.

Addition, subtraction+, -

Multiplication, division, modulo*, /, %

Exponent**

Brackets (inner before outer)()

James Tam

Order Of Operation And Style

•Even for languages where there are clear rules of precedence
(e.g., Java, Python) it is regarded as good style to explicitly
bracket your operations.
x = (a * b) + (c / d)

•It not only makes it easier to read complex formulas but also a
good habit for languages where precedence is not always clear
(e.g., C++, C).

Programming: Introduction

James Tam

Input

•The computer program getting string information from the user.
•Strings cannot be used for calculations (information getting
numeric input will provided shortly).

•Format:
<variable name> = input()

OR
<variable name> = input(“<Prompting message>”)

•Example:
Program name: input1.py

print (“What is your name: ")
name = input ()

OR
name = input (“What is your name: ")

James Tam

Variables: Storing Information

•On the computer all information is stored in binary (2 states)
- Example: RAM memory stores information in a series of on-off
combinations

on offOR

Byte

•8 bits

Bit

Programming: Introduction

James Tam

Variables: Storing Information (2)

•Information must be converted into binary to be stored on a
computer.

User enters Can be stored in the computer as

13

James Tam

Storing Integer Information

•1 bit is used to represent the sign, the rest is used to store the
size of the number
- Sign bit: 1/on = negative, 0/off = positive

•Format:

•Previous example

Digits representing the size of the
number

Negative
number

Positive
number

Positive
number

Size of number, in this case = 13

Programming: Introduction

James Tam

Storing Real Numbers In The Form Of A Float

- Mantissa: digits of the number being stored
- Exponent: the direction and the number of places the decimal point must
move (‘float’) when storing the real number as a floating point value.

•Examples with 5 digits used to represent the mantissa:
- e.g. One: 123.45 is represented as 12345 * 10-2

- e.g. Two: 0.12 is represented as 12000 * 10-5

- e.g. Three: 123456 is represented as 12345 * 101

•Remember: Using floating point numbers may result in a loss of
accuracy (the float is an approximation of the real value to be
stored).

Sign Mantissa Exponent

1 bit Several bits Several bits

James Tam

Storing Character Information

•Typically characters are encoded using ASCII
•Each character is mapped to a numeric value

- E.g., ‘A’ = 65, ‘B’ = 66, ‘a’ = 97, ‘2’ = 50

•These numeric values are stored in the computer using binary

0011001050‘2’

0110000197‘a’

0100001066‘B’

0100000165‘A’

Binary codeASCII numeric codeCharacter

Programming: Introduction

James Tam

Storing Information: Bottom Line

•Why it important to know that different types of information is
stored differently?

•Certain operations only apply to certain types of information
and can produce errors or unexpected results when applied to
other types of information.

•Example
num = input(“Enter a number”)
numHalved = num / 2

James Tam

Converting Between Different Types Of
Information

•Example motivation: you may want numerical information to be
stored as a string (for the formatting capabilities) but also you
want that same information in numerical form (in order to
perform calculations).

•Some of the conversion mechanisms available in Python:
Format:

int (<value to convert>)
float (<value to convert>)
str (<value to convert>)

Examples:
Program name: convert1.py
x = 10.9
y = int (x)
print (x, y)

Programming: Introduction

James Tam

Converting Between Different Types Of
Information (2)

Examples:
Program name: convert2.py
x = '100'
y = '-10.5'
print (x + y)
print (int(x) + float (y))

(Numeric to string: convert3.py
aNum = 123
aString = str(aNum)
aNum = aNum + aNum
aString = aString + aString
print (aNum)
print (aString)

James Tam

Converting Between Different Types Of
Information: Getting Numeric Input

•Because the ‘input’ function only returns string information it
must be converted to the appropriate type as needed.
- Example
Program name: convert4.py

Problem!
HUMAN_CAT_AGE_RATIO = 7
age = input("What is your age in years: ")
catAge = age * HUMAN_CAT_AGE_RATIO
print ("Age in cat years: ", catAge)

Problem solved!
HUMAN_CAT_AGE_RATIO = 7
age = int(input("What is your age in years: "))
catAge = age * HUMAN_CAT_AGE_RATIO
print ("Age in cat years: ", catAge)

• ‘Age’ refers to a string not
a number.

• The ‘*’ is not mathematical
multiplication

• ‘Age’ converted to an
integer.

• The ‘*’ now multiplies a
numeric value.

Programming: Introduction

James Tam

Determining The Type Of Information Stored In A
Variable

•It can be done by using the pre-created python function ‘type’
•Example program: type.py

myInteger = 10
myString = "foo!"
print (type(myInteger))
print (type(10.5))
print (type(myString))

James Tam

Output: Formatting

•Output can be formatted in Python through the use of
placeholders.

•Format:
print (“%<type of info to display/code>” %<source of the info to
display>)

•Example:
- Program name: formatting1.py

num = 123
st = "cpsc 231"
print ("num=%d" %num)
print ("course: %s“ %st)
num = 12.5
print ("%f %d" %(num, num))

Programming: Introduction

James Tam

Types Of Information That Can Be Displayed

Floating point%f

Integer (d = decimal / base 10)%d

String%s

Type of Information to displayDescriptor code

James Tam

Some Formatting Effects Using Descriptor Codes

•Format:
%<width>1.<precision>2<type of information>

•Examples:
- Program name: formatting2.py

num = 12.55
print ("%4.1f" %num)
print ("%.1f" %num)
num = 12
st = "num="
print ("%s%d" % (st, num))
print ("%5s%5s%1s" % ("hi", "hihi", "there"))

1 A positive integer will add leading spaces (right align), negatives will add trailing spaces (left align).
Excluding a value will set the field width to a value large enough to display the output

2 For floating point representations only.

Programming: Introduction

James Tam

From Python Programming (2nd Edition) by
Michael Dawson

Triple Quoted Output

•Used to format text output
•The way in which the text is typed into the program is exactly
the way in which the text will appear onscreen.

•Program name: formatting3.py

James Tam

Escape Codes

•The back-slash character enclosed within quotes won’t be
displayed but instead indicates that a formatting (escape) code
will follow the slash:

Backslash. Prints one backslash.\\

Double quote. Prints a double quote.\”

Single quote. Prints a single quote.\’

Tab. Moves the cursor forward one tab stop.\t

Newline. Moves the cursor to beginning of the
next line.

\n

Backspace. Moves the cursor back one space.\b

Alarm. Causes the program to beep.\a

DescriptionEscape sequence

Programming: Introduction

James Tam

Escape Codes (2)

•Program name: formatting4.py

print ("\a*Beep!*“)
print ("h\bello“)
print ("hi\nthere“)
print ('it\'s‘)
print ("he\\y \"you\" “)

James Tam

Program Documentation

•Program documentation: Used to provide information about a
computer program to another programmer (writes or modifies
the program).

•This is different from a user manual which is written for people
who will use the program.

•Documentation is written inside the same file as the computer
program (when you see the computer program you can see the
documentation).

•The purpose is to help other programmers understand the
program: what the different parts of the program do, what are
some of it’s limitations etc.

Programming: Introduction

James Tam

Program Documentation (2)

•It doesn’t contain instructions for the computer to execute.
•It doesn’t get translated into machine language.
•It’s information for the reader of the program:

- What does the program as a while do e.g., tax program.
- What are the specific features of the program e.g., it calculates personal or
small business tax.

- What are it’s limitations e.g., it only follows Canadian tax laws and
cannot be used in the US. In Canada it doesn’t calculate taxes for
organizations with yearly gross earnings over $1 billion.

- What is the version of the program
•If you don’t use numbers for the different versions of your program then
consider using dates (tie versions with program features).

James Tam

Program Documentation (3)

•Format:
<Documentation>

•Examples:
Tax-It v1.0: This program will electronically calculate your tax return.
This program will only allow you to complete a Canadian tax return.

The number sign ‘#”
flags the translator that
what’s on this line is
documentation.

Programming: Introduction

James Tam

Types Of Documentation

•Header documentation
•Inline documentation

James Tam

Header Documentation

•Provided at the beginning of the program.
•It describes in a high-level fashion the features of the program
as a whole (major features without a great deal of detail).
HEADER DOCUMENTATION
Word Processor features: print, save, spell check, insert images etc.

<program statement>
<program statement>

Programming: Introduction

James Tam

Inline Documentation

•Provided throughout the program.
•It describes in greater detail the specific features of a part of the
program.
Documentation: Saving documents
‘save’: save document under the current name
‘save as’ rename the document to a new name
<program statement>
<program statement>

Documentation: Spell checking
The program can spell check documents using the following English variants:
English (British), English (American), English (Canadian)
<program statement>
<program statement>

James Tam

Prewritten Python Functions

•Python comes with many functions that are a built in part of the
language e.g., ‘print’, ‘input’

•(If a program needs to perform a common task e.g., finding the
absolute value of a number, then you should first check if the
function has already been implemented).

•For a list of all prewritten Python functions.
- http://docs.python.org/library/functions.html

Programming: Introduction

James Tam

Types Of Programming Errors

1. Syntax/translation errors
2. Runtime errors
3. Logic errors

James Tam

1. Syntax/ Translation Errors

•Each language has rules about how statements are to be
structured.

•An English sentence is structured by the grammar of the English
language:
- The cat sleeps the sofa.

•Python statements are structured by the syntax of Python:
- 5 = num

Grammatically incorrect: missing the preposition to
introduce the prepositional phrase ‘the sofa’

Syntactically incorrect: the left hand side of an assignment
statement cannot be a literal (unnamed) constant.

Programming: Introduction

James Tam

1. Syntax/ Translation Errors (2)

•The translator checks for these errors when a computer program
is translated to machine language.

James Tam

1. Some Common Syntax Errors

•Miss-spelling names of keywords
- e.g., ‘primt’ instead of ‘print’

•Forgetting to match closing quotes or brackets to opening
quotes or brackets.

•Using variables before they’ve been named (allocated in
memory).

•Program name: error_syntax.py

print (num)
num = 123
print num

Programming: Introduction

James Tam

2. Runtime Errors

•Occur as a program is executing (running).
•The syntax of the language has not been violated (each
statement follows the rules/syntax).

•During execution a serious error is encountered that causes the
execution (running) of the program to cease.

•With a language like Python where translation occurs just
before execution (interpreted) the timing of when runtime errors
appear won’t seem different from a syntax error.

•But for languages where translation occurs well before
execution (compiled) the difference will be quite noticeable.

•A common example of a runtime error is a division by zero
error.

James Tam

2. Runtime Error1: An Example

•Program name: error_runtime.py

num2 = int(input("Type in a number: "))
num3 = int(input("Type in a number: "))
num1 = num2 / num3
print (num1)

1 When ‘num3’ contains zero

Programming: Introduction

James Tam

3. Logic Errors

•The program has no syntax errors.
•The program runs from beginning to end with no runtime errors.
•But the logic of the program is incorrect (it doesn’t do what it’s
supposed to and may produce an incorrect result).

•Program name: error_logic.py

print ("This program will calculate the area of a rectangle“)
length = int(input("Enter the length: "))
width = int(input("Enter the width: "))
area = length + width
print ("Area: ", area)

James Tam

After This Section You Should Now Know

•How to create, translate and run Python programs.
•Variables:

- What they are used for
- How to access and change the value of a variable
- Conventions for naming variables
- How information is stored differently with different types of variables,
converting between types

•Named constants:
- What are named constants and how they differ from regular variables
- What are the benefits of using a named constant vs. a literal

•What is program documentation and what are some common
things that are included in program documentation

•How are common mathematical operations performed

Programming: Introduction

James Tam

After This Section You Should Now Know (2)

•Output:
- How to display messages that are a constant string or the value of a
memory location (variable or constant) onscreen with print

•How to format output through:
- The use of descriptor codes.
- Escape codes

•How triple quotes can be used in the formatting of output
•Input:

- How to get a program to acquire and store information from the user of the
program

•How do the precedence rules/order of operation work in Python
•About the existence of prewritten Python functions and how to
find descriptions of them

James Tam

After This Section You Should Now Know (3)

•What are the three programming errors, when do they occur and
what is the difference between each one

