
Programming: Introduction to Object-Orientation

James Tam

Classes and Objects

You will learn how to define new types
of variables.

James Tam

Composite Types: Review

•Ones that you should be familiar with now:
- Strings
- Lists
- Tuples
- Dictionaries

•Lists can be used to track relatively simple information e.g., grades, text-
based virtual worlds.

•It is less effective at storing more complex information (e.g., client list) – as
you will see.

•Previous example: tracking client information
firstClient = ["James Tam”

"(403)210-9455",
"tamj@cpsc.ucalgary.ca",
0]

secondClient = ["Peter Griffin”
"(708)123-4567",
"griffinp@familyguy.com",

100]

Programming: Introduction to Object-Orientation

James Tam

Composite Types: Review (2)

•If a large number of composite types need to be tracked (e.g.,
many clients) then you can employ lists of lists.

•(This means that each list element consists of another list).

James Tam

Example: List Of Lists

•You can find the full online example under:
/home/231/examples/classes/list_of_lists.py

MAX = 4

def initialize (myClients):
for i in range (0, MAX, 1):

temp = [(i+1),
“default name”,
"(111)111-1111",
"foo@bar.com",
0]

myClients.append(temp)

Programming: Introduction to Object-Orientation

James Tam

Example: Lists Of Lists (2)

def display (myClients):
for i in range (0, MAX, 1):

print myClients[i]

MAIN
def main ():

myClients = []
initialize (myClients)
display(myClients)

main ()

James Tam

Some Drawbacks Of Using A List

•Which field contains what type of information? This isn’t
immediately clear from looking at the program statements.
temp = [(i+1),

“default name”,
"(111)111-1111",
"foo@bar.com",
0]

•Is there any way to specify rules about the type of information
to be stored in a field e.g., a data entry error could allow
alphabetic information to be entered in the phone number field.

What is this?

Programming: Introduction to Object-Orientation

James Tam

Classes

•Can be used to define a generic template for a new non-
homogeneous composite type.

•It can label and define more complex entities than a list.
•This template defines what an instance or example of this new
composite type would consist of but it doesn’t create an
instance.

James Tam

Defining A Class

•Format:
class <Name of the class>:

name of first field = <default value>
name of second field = <default value>

•Example:
class Client:

name = "default"
phone = "(123)456-7890"
email = "foo@bar.com"
purchases = 0

Describes what information
that would be tracked by a
“Client” but doesn’t actually
create a client in memory

Note the convention: The
first letter is capitalized.

Programming: Introduction to Object-Orientation

James Tam

Creating An Instance Of A Class

•Format:
<reference name> = <name of class> ()

•Example:
firstClient = Client ()

James Tam

Defining A Class Vs. Creating An Instance Of That
Class

•Defining a class
- A template that describes that
class: how many fields, what type
of information will be stored by
each field, what default
information will be stored in a
field.

•Creating a class
- Instances of that class
(instantiations) which can take on
different forms.

Programming: Introduction to Object-Orientation

James Tam

Accessing And Changing The Fields

•Format:
<reference name>.<field name> # Accessing value
<reference name>.<field name> = <value> # Changing value

•Example:
aClient.name = "James"

James Tam

The Client List Example Implemented Using Classes

•You can find the full online example under:
/home/231/examples/classes/client.py

class Client:
name = "default"
phone = "(123)456-7890"
email = "foo@bar.com"
purchases = 0

Programming: Introduction to Object-Orientation

James Tam

The Client List Example Implemented
Using Classes (2)

def main ():
firstClient = Client ()
firstClient.name = "James Tam"
firstClient.email = "tamj@cpsc.ucalgary.ca"
print firstClient.name
print firstClient.phone
print firstClient.email
print firstClient.purchases

main ()

James Tam

What Is The Benefit Of Defining A Class

• It allows new types of variables to be declared.
• The new type can model information about most any arbitrary

entity:
- Car
- Movie
- Your pet
- A biological entity in a simulation
- A ‘critter’ (e.g., monster, computer-controlled player) a video game
- An ‘object’ (e.g., sword, ray gun, food) in a video game
- Etc.

Programming: Introduction to Object-Orientation

James Tam

What Is The Benefit Of Defining A Class (2)

•Unlike creating a composite type by using a list a predetermined
number of fields can be specified and those fields can be named.

class Client:
name = "default"
phone = "(123)456-7890"
email = "foo@bar.com"
purchases = 0

firstClient = Client ()
print firstClient.middleName

James Tam

What Is The Benefit Of Defining A Class (2)

•Unlike creating a composite type by using a list a predetermined
number of fields can be specified and those fields can be named.

class Client:
name = "default"
phone = "(123)456-7890"
email = "foo@bar.com"
purchases = 0

firstClient = Client ()
print firstClient.middleName There is no field by

this name

Programming: Introduction to Object-Orientation

James Tam

Class Methods

•Somewhat similar to the other composite types, classes can have
functions associated with them.
- E.g.,
filename = "foo.txt"
name, suffix = filename.split('.')

•Unlike these pre-created functions, the ones that you associate
with classes can be customized to do anything that a regular
function can.

•Functions that are associated with classes are referred to as
methods.

James Tam

Defining Class Methods

Format:
class <classname>:

def <method name> (self, <other parameters>):
<method body>

Example:
class Person:

name = "I have no name :("
def sayName (self):

print "My name is...", self.name

Programming: Introduction to Object-Orientation

James Tam

Defining Class Methods: Full Example

•The full online example can be found in UNIX under:
/home/231/examples/classes/person.py

class Person:
name = "I have no name :("
def sayName (self):

print "My name is...", self.name

def main ():
aPerson = Person ()
aPerson.sayName ()
aPerson.name = "Big Smiley :D"
aPerson.sayName ()

main ()

James Tam

What Is The ‘Self’ Parameter

•When defining/call methods of a class there is always at least
one parameter.

•This parameter is called the ‘self’ reference which allows an
object to access it’s attributes inside it’s methods.

•It’s needed to distinguish the attributes of different objects of
the same class.

•Example:
bart = Person ()
lisa = Person ()
lisa.sayName ()

def sayName ():
print "My name is...", name

Whose name is this?
(This won’t work)

Programming: Introduction to Object-Orientation

James Tam

The Self Parameter: A Complete Example

•The full online example can be found under:
/home/231/examples/classes/person2.py

class Person:
name = "I have no name :("
def sayName (self):

print "My name is...", self.name

def main ():
lisa = Person ()
lisa.name = "Lisa Simpson"
bart = Person ()
bart.name = "I'm Bart Simpson, who the h*ck are you???!!!"

lisa.sayName ()
bart.sayName ()

main ()

James Tam

Initializing The Attributes Of A Class

•Classes have a special method that can be used to initialize the
starting values of a class to some specific values.

•This method is automatically called whenever an object is
created.

•Format:
class <Class name>:
def __init__ (self, <other parameters>):

<body of the method>
•Example:

class Person:
name = ""
def __init__ (self):

self.name = "No name"

No spaces here

Programming: Introduction to Object-Orientation

James Tam

Full Example: Using The “Init” Method

•The full online example can be found under:
/home/231/examples/classes/init_method.py

class Person:
name = ""
def __init__ (self):

self.name = "I am the nameless bard"

def main ():
finder = Person ()
print finder.name

main ()

James Tam

Constructor: A Special Method

•Constructor method: a special method that is used when
defining a class and it is automatically called when an object of
that class has been created.
- E.g., aPerson = Person () # This calls the constructor

•In Python this method is named ‘init’.
•Other languages may require a different name for the syntax but
it serves the same purpose (initializing the fields of an objects as
it’s being created).

•This method never returns any values.

Programming: Introduction to Object-Orientation

James Tam

Default Parameters

•Methods such as ‘init’ can be defined so that if parameters aren’t
passed into them then default values can be assigned.

•Example:
def __init__ (self, name = "I have no name"):

•Method calls (to ‘init’), both will work
smiley = Person ()
jt = Person ("James")

This method can be called
either when a personalized
name is given or if the name
is left out.

James Tam

Default Parameters: Full Example

•The full online example can be found under:
/home/231/examples/classes/init_method2.py

class Person:
name = ""
def __init__ (self, name = "I have no name"):

self.name = name

def main ():
smiley = Person ()
print "My name is...", smiley.name
jt = Person ("James")
print "My name is...", jt.name

main ()

Programming: Introduction to Object-Orientation

James Tam

Modules: Dividing Up A Large Program

•In Python a module contains a part of a program in a separate
file.

•In order to access a part of a program that resides in another file
you must ‘import’ it.

•Example:

def fun ():
print "I'm fun!"

File: fun.py

from fun import *1

def main ():
fun ()

main ()

File: main.py

1 Import syntax:

From <filename> import <function names>

James Tam

Modules: Complete Example

•The complete example can be found under:
/home/231/examples/classes/modules1

•Extract both files into the same folder/directory and run the
‘main’ method (type: “python main.py”)

<< In file main.py >>
from fun import fun1, fun2

def main ():
fun1 ()
fun2 ()

main ()

Programming: Introduction to Object-Orientation

James Tam

Modules: Complete Example (2)

<< In file fun.py >>
def fun1 ():

print "I'm fun1!"

def fun2 ():
print "I'm fun2!"

James Tam

Modules And Classes

•Class definitions are frequently contained in their own module.
•A common convention is to have the module (file) name match
the name of the class.

def Person:
pass

Filename: person.py

Programming: Introduction to Object-Orientation

James Tam

Modules And Classes: Complete Example

•The full online example can be found under:
/home/231/examples/classes/modules2

•Extract both files into the same folder/directory and run the
‘main’ method which is in the file called “driver.py” (type:
“python driver.py”)

<< File driver.py >>
from Foo import *

def main ():
aFoo = Foo ()
aFoo.hello ()

main ()

When importing modules containing class definitions the syntax is:

From <filename> import <classes to be used in this module>

James Tam

Modules And Classes: Complete Example (2)

<< File foo.py >>
class Foo:

def hello (self):
print "Hello! Sup?! Guten tag/morgen/aben! Buenos! Wei! Ohio! \

Shalom! Bonjour! Salaam alikum! Kamostaka!"

Programming: Introduction to Object-Orientation

James Tam

You Should Now Know

•How to define an arbitrary composite type using a class
•What are the benefits of defining a composite type by using a
class definition over using a list

•How to create instances of a class (instantiate)
•How to access and change the attributes (fields) of a class
•How to define methods/call methods of a class
•What is a ‘self’ parameter and why is it needed
•What is a constructor, when it is used and why is it used
•How to write a method with default parameters
•How to divide your program into different modules

