
Programming: Composite types (lists, strings, tuples,
classes)

James Tam

Composite Types

You will learn in this section of notes
how to create single and generic
instances of non-homogeneous
composite types that are used for
different scenarios.

James Tam

Types Of Variables

Python
variables

1. Simple
(atomic)

integer boolean float

2. Aggregate
(composite)

Strings Lists Tuples Dictionaries

Programming: Composite types (lists, strings, tuples,
classes)

James Tam

Small Example Programs Using Strings

•They can be found online under the following names
- string1.py (passing a whole string to a function)
- string2.py (indexing the parts of a string)
- string3.py (demonstrating the immutability of strings)
- string4.py (string slicing)
- string5.py (strings as sets, test for inclusion using ‘in’)
- string6.py (strings that are repetitive sequence)
- string7.py (using string functions: converting string input to numerical)
- string8.py (using string functions that return modified versions of a string)
- string9.py (string search functions)

•All the examples will be located in UNIX under:
/home/231/examples/composites

James Tam

String

•Strings are just a series of characters (e.g., alpha, numeric,
punctuation etc.)

•A string can be treated as one entity.
def fun (aString):

print aString

MAIN
aString = “Goodbye cruel world!”
fun (aString)

•Or the individual elements (characters) can be accessed via an
index.
- Note: A string with ‘n’ elements has an index from 0 to (n-1)
MAIN
aString = "hello"
print aString[1],
print aString[4],

Programming: Composite types (lists, strings, tuples,
classes)

James Tam

Strings Are Immutable

•Even though it may look a string can change they actually
cannot be edited.
MAIN
aString = "good-bye"
print aString
aString = "hello"
print aString
aString[0] = "G“ # Error

James Tam

Substring Operations

•Sometimes you may wish to extract out a portion of a string.
- E.g., Extract out “James” from “James T. Kirk, Captain”

•This operation is referred to as a ‘substring’ operation in many
programming languages.

•There are two implementations of the substring operation in
Python:
- String slicing
- String splitting

Programming: Composite types (lists, strings, tuples,
classes)

James Tam

String Slicing

•Slicing a string will return a portion of a string based on the
indices provided

•The index can indicate the start and end point of the substring.
•Format:

string_name [start_index : end_index]

•Example:
aString = "abcdefghij"
print aString
temp = aString [2:5]
print temp
temp = aString [:5]
print temp
temp = aString [7:]
print temp

James Tam

String Splitting

•Divide a string into portions with a particular character
determining where the split occurs.
- The string “The cat in the hat” could be split into individual words
- “The” “cat” “in” “the” “hat”

•Format:
string_name.split (‘’<character used in the split’)

•Examples:
aString = "man who smiles"
one, two, three = aString.split() # Default character is a space
print one
print two
print three
aString = "Tam, James"
last, first = aString.split(',')
print first, last

Programming: Composite types (lists, strings, tuples,
classes)

James Tam

Strings Can Be Conceptualized As Sets

•The ‘in’ and ‘not in’ operations can be performed on a string.
•Branching

passwords = "aaa abc password xxx"
password = raw_input ("Password: ")
if password in passwords:

print "You entered an existing password, enter a new one“

•Looping (iterating through the elements)
sentence = "hihi there!"
for temp in sentence:

sys.stdout.write(temp)

James Tam

Repetitive Strings

•A string with a number of repeated characters can be initialized
in a number of ways.
aString = “xxxxxxxx”
aString = “hi!” * 5

Programming: Composite types (lists, strings, tuples,
classes)

James Tam

String Testing Functions1

•These functions test a string to see if a given condition has
been met and return either “True” or “False” (Boolean).

•Format:
string_name.function_name ()

1 These functions will return false if the string is empty (less than one character).

James Tam

String Testing Functions (2)

Only returns true if the alphabetic characters in the string
are all upper case.

isupper ()

Only returns true if string consists only of whitespace
characters (“ “, “\n”, “\t”)

isspace ()

Only returns true if the alphabetic characters in the string
are all lower case.

islower ()

Only returns true if the string is composed only of
alphabetic characters or numeric digits.

isalnum ()

Only returns true if the string consists only of digits.isdigit ()

Only true if the string consists only of alphabetic
characters.

isalpha ()

DescriptionBoolean
Function

Programming: Composite types (lists, strings, tuples,
classes)

James Tam

Applying A String Testing Function

MAIN
ok = False
while (ok == False):

temp = raw_input ("Enter numbers not characters: ")
ok = temp.isdigit()
if (ok == False):

print temp, "is not a number"
else:

print "done"
num = int (temp)
num = num + num
print num

James Tam

Functions That Modify Strings

•These functions return a modified version of an existing string (leaves the
original string intact).

Returns a copy of the string with all the alpha characters as
lower case (non-alpha characters are unaffected).

lower ()

Returns a copy of the string with all trailing instances of the
character parameter removed.

rstrip (char)

Returns a copy of the string with all leading instances of the
character parameter removed.

lstrip (char)

Returns a copy of the string with all trailing (right)
whitespace characters removed.

rstrip ()

Returns a copy of the string with all leading (left)
whitespace characters removed.

lstrip ()

Returns a copy of the string with all leading and trailing
whitespace characters removed.

strip ()

Returns a copy of the string with all the alpha characters as
upper case (non-alpha characters are unaffected).

upper ()

DescriptionFunction

Programming: Composite types (lists, strings, tuples,
classes)

James Tam

Example Uses Of Functions That Modify Strings

aString = "talk1! AbouT"
print aString
aString = aString.upper ()
print aString

aString = "xxhello there"
print aString
aString = aString.lstrip ('x')
print aString
aString = "xxhellx thxrx"
aString = aString.lstrip ('x')
print aString

James Tam

Functions To Search Strings

A substring is the parameter and the function returns
true only if the string ends with the substring.

endswith (substring)

The function returns a copy of the string with all
instances of ‘oldstring’ replace by ‘newstring’

replace (oldstring,
newstring)

A substring is the parameter and the function returns
the lowest index in the string where the substring is
found (or -1 if the substring was not found).

find (substring)

A substring is the parameter and the function returns
true only if the string starts with the substring.

startswith (substring)

DescriptionFunction

Programming: Composite types (lists, strings, tuples,
classes)

James Tam

Examples Of Functions To Search Strings

temp = raw_input ("Enter a sentence: ")
if not ((temp.endswith('.')) or (temp.endswith('!')) or (temp.endswith ('?'))):

print "Not a sentence"

temp = "XXabcXabcabc"
index = temp.find("abc")
print index

temp = temp.replace("abc", "Abc")
print temp

James Tam

List

•In many programming languages a list is implemented as an
array.

•Python lists have many of the characteristics of the arrays in
other programming languages but they also have many other
features.

•This first section will talk about the features of lists that are
largely common to arrays.

Programming: Composite types (lists, strings, tuples,
classes)

James Tam

Example Problem

•Write a program that will track the percentage grades for a class
of students. The program should allow the user to enter the
grade for each student. Then it will display the grades for the
whole class along with the average.

James Tam

Why Bother With Composite Types?

•The full example can be found in UNIX under:
/home/231/examples/composites/classList1.py

CLASS_SIZE = 5
stu1 = 0
stu2 = 0
stu3 = 0
stu4 = 0
stu5 = 0
total = 0
average = 0

stu1 = input ("Enter grade for student no. 1: ")
stu2 = input ("Enter grade for student no. 2: ")
stu3 = input ("Enter grade for student no. 3: ")
stu4 = input ("Enter grade for student no. 4: ")
stu5 = input ("Enter grade for student no. 5: ")

Programming: Composite types (lists, strings, tuples,
classes)

James Tam

Why Bother With Composite Types? (2)

total = stu1 + stu2 + stu3 + stu4 + stu5
average = total / CLASS_SIZE

print
print "GRADES"
print "The average grade is", average, "%"
print "Student no. 1:", stu1
print "Student no. 2:", stu2
print "Student no. 3:", stu3
print "Student no. 4:", stu4
print "Student no. 5:", stu5

James Tam

Why Bother With Composite Types? (2)

total = stu1 + stu2 + stu3 + stu4 + stu5
average = total / CLASS_SIZE

print
print "GRADES"
print "The average grade is", average, "%"
print "Student no. 1:", stu1
print "Student no. 2:", stu2
print "Student no. 3:", stu3
print "Student no. 4:", stu4
print "Student no. 5:", stu5

NO!

Programming: Composite types (lists, strings, tuples,
classes)

James Tam

What Were The Problems With
The Previous Approach?

•Redundant statements.
•Yet a loop could not be easily employed given the types of
variables that you have seen so far.

James Tam

What’s Needed

•A composite variable that is a collection of another type.
- The composite variable can be manipulated and passed throughout the

program as a single entity.
- At the same time each element can be accessed individually.

•What’s needed…an array / list!

Programming: Composite types (lists, strings, tuples,
classes)

James Tam

Creating A List (No Looping)

•This step is mandatory in order to allocate memory for the array.

•Omitting this step (or the equivalent) will result in a syntax
error.

•Format:
<array_name> = [<value 1>, <value 2>, ... <value n>]

Example:
percentages = [0.0, 0.0, 0.0, 0.0, 0.0]

letters = [‘A’, ‘A’, ‘A’]

names = [“James Tam”, “Stacey Walls”, “Jamie Smyth”]

James Tam

Creating A List (With Loops)

• Step 1: Create a variable that is a reference to the list
• Format:

<list name> = []

• Example:
classGrades = []

Programming: Composite types (lists, strings, tuples,
classes)

James Tam

Creating A List (With Loops: 2)

•Step 2: Initialize the list with the elements
•General format:

- Within the body of a loop create each element and then append the new
element on the end of the list.

•Example:
for i in range (0, 5, 1):

classGrades.append (0)

James Tam

Revised Version Using A List

•The full example can be found in UNIX under:
/home/231/examples/composites/classList2.py

CLASS_SIZE = 5
i = 0
total = 0
average = 0
classGrades = []

for i in range (0, CLASS_SIZE, 1):
classGrades.append(0)

Programming: Composite types (lists, strings, tuples,
classes)

James Tam

Revised Version Using A List (2)

for i in range (0, CLASS_SIZE, 1):
print "Enter grade for student no.", (i+1), ":",
classGrades[i] = input ()
total = total + classGrades[i]

average = total / CLASS_SIZE

print
print "GRADES"
print "The average grade is", average, "%"
for i in range (0, CLASS_SIZE, 1):

print "Student no.", (i+1)

James Tam

Printing Lists

•Although the previous example stepped through each element of
the list in order to display it’s contents onscreen if you want to
quickly check the contents (and not worry about details like
formatting) then you can simply use a print statement as you
would with any other variable.

Example:
print classGrades

Output:
[10, 20, 30, 40, 50]

Programming: Composite types (lists, strings, tuples,
classes)

James Tam

Take Care Not To Exceed The Bounds Of The List

RAM
[0]
[1]
[2]
[3]

list OK
OK
OK
OK
???

list = [0, 1, 2, 3]
for i in range (0, 4, 1):

print list [i],

print
print list [4] ???

James Tam

One Way Of Avoiding An Overflow Of The List

•Use a constant in conjunction with the list.
SIZE = 100

•The value in the constant controls traversals of the list
for i in range (0, SIZE, 1):

myList [i] = raw_input (“Enter a value:”)

for i in range (0, SIZE, 1):
print myList [i]

Programming: Composite types (lists, strings, tuples,
classes)

James Tam

One Way Of Avoiding An Overflow Of The List

•Use a constant in conjunction with the list.
SIZE = 100000

•The value in the constant controls traversals of the list
for i in range (0, SIZE, 1):

myList [i] = raw_input (“Enter a value:”)

for i in range (0, SIZE, 1):
print myList [i]

James Tam

• To manipulate an array you need to first indicate which list is being accessed
- Done via the name of the list e.g., “print classGrades”

• If you are accessing a single element, you need to indicate which element that you
wish to access.
- Done via the list index e.g., “print classGrades[1]”

Accessing Data In The List

classGrades [0]

[1]

[2]
[3]
[4]

classGrades [0]

[1]

[2]
[3]
[4]

Using only the name of the
list refers to the whole list

Use the list name and a
subscript (the ‘index’) refers
to a single element

Programming: Composite types (lists, strings, tuples,
classes)

James Tam

Important Things To Keep In Mind

•(What you should now): Lists are a composite type that can be
decomposed into other types.

•Other important points:
- Copying lists
- Passing lists as parameters

James Tam

Copying Lists

•A list variable is not actually a list!
•Instead that list variable is actually a reference to the list.
•(This is important because if you use the assignment operator to
copy from list to another you will end up with only one list).

•Example:
- The full example can be found in UNIX under:
/home/231/examples/composites/copy1.py

list1 = [1,2]
list2 = [2,1]
print list1, list2

list1 = list2
print list1, list2

list1[0] = 99
print list1, list2

Programming: Composite types (lists, strings, tuples,
classes)

James Tam

Copying Lists (2)

•To copy the elements of one list to another a loop is
needed to copy each successive elements.

•Example:
-The full example can be found in UNIX under:
/home/231/examples/composites/copy2.py

list1 = [1,2,3,4]
list2 = []

for i in range (0, 4, 1):
list2.append(list1[i])

print list1, list2
list1[1] = 99
print list1, list2

James Tam

Passing Lists As Parameters

•Unlike what you’ve seen with parameter passing so far,
modifying a list that’s been passed as a parameter to a function
may modify the original list.

•It all depends upon how the list is accessed in the function.
•When a list is created the variable is not actually a list but only a
reference to the list.

•When the reference is passed as a parameter to a function
another reference also refers to the list.

Programming: Composite types (lists, strings, tuples,
classes)

James Tam

Original List Is Changed

•Passing lists into functions is done using a different mechanism
- When a list is passed into the function a local reference refers to the
original list.

- Example:
- The full example can be found in UNIX under:
/home/231/examples/composites/parameter1.py

def fun (list):
list[0] = 99
print list

def main ():
list = [1,2,3]
print list
fun (list)
print list

main ()

James Tam

Original List Is Unchanged

•If the local reference is assigned to another list then it will
obviously no longer refer to the original list.

•(Effect: changes made via the local reference will change the
local list and not the original that was passed into the function).

•Example:
•The full example can be found in UNIX under:
/home/231/examples/composites/parameter2.py

def fun (list):
list = [3,2,1]
print list

def main ():
list = [1,2,3]
print list
fun (list)

Programming: Composite types (lists, strings, tuples,
classes)

James Tam

When To Use Lists Of Different Dimensions

•Determined by the data – the number of categories of information
determines the number of dimensions to use.

• Examples:
•(1D array)

-Tracking grades for a class
-Each cell contains the grade for a student i.e., grades[i]
-There is one dimension that specifies which student’s grades are being accessed

•(2D array)
-Expanded grades program
-Again there is one dimension that specifies which student’s grades are being
accessed

-The other dimension can be used to specify the lecture section

One dimension (which student)

James Tam

When To Use Lists Of Different Dimensions (2)

•(2D list continued)

Student

Lecture
section

:

L01

L02

L03

L0N

L05

L04

Third
student

…
Second
student

First
student

Programming: Composite types (lists, strings, tuples,
classes)

James Tam

When To Use Lists Of Different Dimensions (3)

•(2D list continued)
•Notice that each row is merely a 1D list
•(A 2D list is a list containing rows of 1D lists)

L02

L07

L01

L03

L04

[0] [1] [2] [3]
[0]

[1]

[2]

[3]

[4]

[5]

[6]

Columns

Rows

•L06

•L05

Important:

List elements are
specified in the order of
[row] [column]

James Tam

Creating And Initializing A Multi-Dimensional List
In Python

General structure
<array_name> = [[<value 1>, <value 2>, ... <value n>],

[<value 1>, <value 2>, ... <value n>],
: : :
: : :

[<value 1>, <value 2>, ... <value n>]]

Rows

Columns

Programming: Composite types (lists, strings, tuples,
classes)

James Tam

Creating And Initializing A Multi-Dimensional List
In Python (2)

Example:
matrix = [[0, 0, 0],

[1, 1, 1],
[2, 2, 2],
[3, 3, 3]]

for r in range (0, 4, 1):
for c in range (0, 3, 1):

print matrix [r][c],
print

James Tam

Creating And Initializing A Multi-Dimensional List
In Python (3)

•General structure (Using loops):
• Create a variable that refers to a 1D list. The outer loop traverses the rows. Each
iteration of the outer loop creates a new 1D list. Then the inner loop traverses the
columns of the newly created 1D list creating and initializing each element in a
fashion similar to how a single 1D list was created and initialized.

•Example (Using loops):
aGrid = [] # Create a reference to the list
for r in range (0, 3, 1): # Outer loop runs once for each row

aGrid.append ([]) # Create a row (a 1D list)
for c in range (0, 3, 1): # Inner loop runs once for each column

aGrid[r].append (" ") # Create and initialize each element (1D list)

Programming: Composite types (lists, strings, tuples,
classes)

James Tam

Example 2D List Program: A Character-Based Grid

•The full example can be found in UNIX under:
/home/231/examples/composites/grid.py

import sys
import random

MAX_ROWS = 4
MAX_COLUMNS = 4
NO_COMBINATIONS = 10

James Tam

A Character-Based Grid (2)

def generateElement (temp):
anElement = '?'
if (temp >= 1) and (temp <= 6):

anElement = ' '
elif (temp >= 7) and (temp <= 9):

anElement = '*'
elif (temp == 10):

anElement = '.'
else:

print "<< Error with the random no. generator.>>"
print "<< Value should be 1-10 but random value is ", temp
anElement = '!'

return anElement

Programming: Composite types (lists, strings, tuples,
classes)

James Tam

A Character-Based Grid (3)

def initialize (aGrid):
for r in range (0, MAX_ROWS, 1):

for c in range (0, MAX_COLUMNS, 1):
temp = random.randint (1, NO_COMBINATIONS)
aGrid[r][c] = generateElement (temp)

James Tam

A Character-Based Grid (4)

def display (aGrid):
for r in range (0, MAX_ROWS, 1):

for c in range (0, MAX_COLUMNS, 1):
sys.stdout.write(aGrid[r][c])

print

def displayLines (aGrid):
for r in range (0, MAX_ROWS, 1):

print " - - - -"
for c in range (0, MAX_COLUMNS, 1):

sys.stdout.write ('|')
sys.stdout.write (aGrid[r][c])

print '|'
print " - - - -"

Programming: Composite types (lists, strings, tuples,
classes)

James Tam

A Character-Based Grid (5)

• # MAIN FUNCTION

def main ():
aGrid = []
for r in range (0, MAX_ROWS, 1):

aGrid.append ([])
for c in range (0, MAX_COLUMNS, 1):

aGrid[r].append (" ")

initialize(aGrid)
print "Displaying grid"
print "==============="

display (aGrid)
print
print "Displaying grid with bounding lines"
print "==================================="
displayLines (aGrid)

James Tam

List Elements Need Not Store The Same Data Type

•What if different types of information needs to be tracked in the
list?

Example, storing information
about a client:
•Name

•Phone number

•Email address

•Total purchases made

…series of characters

…numerical or character

…series of characters

…numerical or character

Programming: Composite types (lists, strings, tuples,
classes)

James Tam

Non-Homogeneous Lists

•If just a few clients need to be tracked then a simple list can be
employed:
firstClient = ["James Tam”

"(403)210-9455",
"tamj@cpsc.ucalgary.ca",

0]

James Tam

Non-Homogeneous Lists (2)

•(Or as a small example)
def display (firstClient):

print "DISPLAYING CLIENT INFORMATION"
print "-----------------------------"
for i in range (0, 4, 1):

print firstClient [i]

MAIN
firstClient = ["James Tam”

"(403)210-9455",
"tamj@cpsc.ucalgary.ca",
0]

display (firstClient)

Programming: Composite types (lists, strings, tuples,
classes)

James Tam

Non-Homogeneous Lists (3)

•If only a few instances of the composite type (e.g., “Clients”)
need to be created then multiple instances single lists can be
employed.
firstClient = ["James Tam”

"(403)210-9455",
"tamj@cpsc.ucalgary.ca",
0]

secondClient = ["Peter Griffin”
"(708)123-4567",
"griffinp@familyguy.com",
100]

James Tam

Small Example Programs Using Lists

•The examples can be found in UNIX under
/home/231/examples/composites/
- list1.py (concatenation and repetition)
- list2.py (membership)

Programming: Composite types (lists, strings, tuples,
classes)

James Tam

Some List Operations

Extract a part of a list[:]Slicing

Return the number of
items in a list

lenLength

Query whether an item
is not a member of a list

not inMembership

Query whether an item
is a member of a list

inMembership

Concatenate a repeated
number of times

*Repetition

Combine lists+Concatenation

Access a list element[]Indexing

DescriptionOperatorOperation name

James Tam

Examples: Concatenation And Repetition

list1 = [1, 2.0, "foo"]
list2 = [[1,2,3], "salam"]
print list1
print list2
list1 = list1 * 2
print list1
list3 = list1 + list2
print list3

Programming: Composite types (lists, strings, tuples,
classes)

James Tam

Examples: Membership

print "Example 1: "
recall_list = ["vpn123", "ncc1946", "gst7"]
item = raw_input ("Product code: ")
if item in recall_list:

print "Your product was on the recall list, take it back"
else:

print "You're safe"
print

print "Example 2:"
days = ["Sun", "Mon", "Tue", "Wed", "Thur", "Fri", "Sat"]
for temp in days:

print temp

James Tam

Some Useful List Operations

Counts and returns the
number of occurrences
of the item

list_name.count (item)Count

Reverses the current
order of the list

list_name.reverse ()Reverse

Sorts from smallest to
largest

list_name.sort ()Sort

Inserts a new item at
index ‘i’

list_name.insert (i, item)Insert

Adds a new item to the
end of the list

list_name.append (item)Append

DescriptionFormatOperation

Programming: Composite types (lists, strings, tuples,
classes)

James Tam

Tuples

•Much like a list, a tuple is a composite type whose elements can
consist of any other type.

•Tuples support many of the same operators as lists such as
indexing.

•However tuples are immutable.
•Tuples are used to store data that should not change.

James Tam

Creating Tuples

•Format:
tuple_name = (value1, value2...valuen)

•Example:
tup = (1,2,"foo",0.3)

Programming: Composite types (lists, strings, tuples,
classes)

James Tam

A Small Example Using Tuples

•This example can be found online in UNIX under:
/home/231/examples/composites/tuples1.py

tup = (1,2,"foo",0.3)
print tup
print tup[2]
tup[2] = "bar"

Error:
“TypeError: object does not support item assignment”

James Tam

Function Return Values

•Although it appears that functions in Python can return multiple values they
are in fact consistent with how functions are defined in other programming
languages.

•Functions can either return zero or exactly one value only.
•Specifying the return value with brackets merely returns one tuple back to
the caller.

def fun ():
return (1,2,3)

Def fun (num):
if (num > 0):

print “pos”
return

elif (num < 0):
print “neg”
return

Returns: A tuple with three elements

Nothing is returned back to the caller

Programming: Composite types (lists, strings, tuples,
classes)

James Tam

Dictionaries

•A special purpose composite type that maps keys (which can be
any immutable type) to a value (like lists it can be any value).

•The keys can be used to later lookup information about the
value e.g., looking up the definition for a word in a dictionary.

James Tam

Small Example Programs Using Dictionaries

•The examples can be found online in UNIX under:
/home/231/examples/composites/
- dictionary1.py (creating dictionaries)
- dictionary2.py (deleting entries from the dictionary, checking for
membership)

Programming: Composite types (lists, strings, tuples,
classes)

James Tam

Creating A Small Dictionary

•Format (defining the entire dictionary all at once)
<dictionary_name> = {key1:value1, key2:value2...keyn:valuen}

•Example: (defining the entire dictionary all at once)
dict = {"one":"yut", "two":"yee", "three":"saam"}

James Tam

Creating A Large Dictionary

•Format:
- dictionary_name = {}
- dictionary_name [key1] = value1

- dictionary_name [key2] = value2

- : : :
- dictionary_name [keyn] = valuen

•Example:
dict = {}
dict ["word1"] = ["Dictionary definition for word1"]
dict ["word2"] = ["Dictionary definition for word2"]

Programming: Composite types (lists, strings, tuples,
classes)

James Tam

Examples Of Creating Dictionaries

dict = {}
dict ["word1"] = ["Dictionary definition for word1"]
dict ["word2"] = ["Dictionary definition for word2"]
dict ["word3"] = ["Dictionary definition for word3"]
temp = raw_input ("Enter dictionary definition for word4: ")
dict ["word4"] = [temp]
print dict

dict = {"one" : "yut", "two" : "yee", "three" : "saam"}
print dict
word = raw_input ("Enter word to translate: ")
print "English:", word, "\t", "Chinese", dict[word]

James Tam

Removing Dictionary Entries

•Format:
- del <dictionary_name> [key]

•Example:
del dict ["one"]

Programming: Composite types (lists, strings, tuples,
classes)

James Tam

Example: Deletion And Checking For Membership

dict = {}
dict ["one"] = "Sentence one"
dict ["two"] = "Sentence two"
dict ["three"] = "Sentence three"

if "one" in dict:
print "key one is in the dictionary"

del dict["one"]
if "one" not in dict:

print "key one is NOT in the dictionary"

James Tam

You Should Now Know

•What is the difference between a mutable and an immutable
type

•How strings are actually a composite type
•Common string functions and operations
•Why and when a list should be used
•How to create and initialize a list
•How to access or change the elements of a list
•Issues associated with copying lists and passing lists as
parameters into functions

•When to use lists of different dimensions
•How to use the 'in' operator in conjunction with lists
•How a list can be used to store different types of information
(non-homogeneous composite type)

Programming: Composite types (lists, strings, tuples,
classes)

James Tam

You Should Now Know (2)

•Common list operations and functions
•How to define an arbitrary composite type using a class
•What is a tuple and how do they differ from other composite
types

James Tam

You Should Now Know (2)

•How to create a tuple and access the elements
•Why functions at most return a single value
•What is a dictionary and when can they can be used
•How to create a dictionary, access and remove elements

