
CPSC 233: Introduction to Data Structures, Lists

James Tam

Introduction To Data Structures

This section introduces the concept of a
data structure as well as providing the

details of a specific example: a list.

James Tam

What Is A Data Structure

•A composite type that has a set of basic operations (e.g., display elements of
a list) that may be performed on instances of that type.

- It can be accessed as a whole (e.g., pass the entire list as a parameter to a function).
- Individual elements can also be accessed (e.g., update the value for a single list

element).

•The type may be a built-in part of the programming language
- e.g., lists are included with the Python language and need not be defined before

they can be used

•The type may also be defined by the programmer inside a program (for
languages which don’t include this composite type)

class List
{

: :
}

CPSC 233: Introduction to Data Structures, Lists

James Tam

What Is A Data Structure (2)

-In some cases the data structure may only be partially
implemented as part of the language, some operations must be
manually written by the programmer.

-Example: The ability to add an element to a list has been
implemented as a pre-created Python function.

aGrid = [] # Creates an empty list
aGrid.append (12) # Adds a number to the end of the list

-In a language such as ‘C’ a list is implemented as an array but
the operation to add elements to the end of the list must be
written by the programmer.

-Moral: when choosing a programming language look for built-
in support for key features.

James Tam

Lists

•Lists are a type of data structure (one of the simplest and most
commonly used).
- e.g., grades for a lecture can be stored in the form of a list

•List operations: creation, adding new elements, searching for
elements, removing existing elements, modifying elements,
displaying elements, sorting elements, deleting the entire list).

•List implementation in Java: array, linked list.

CPSC 233: Introduction to Data Structures, Lists

James Tam

Arrays

•An array of ‘n’ elements will have an index of zero for the first
element up to index (n-1) for the last element.

•The array index is an integer and indicates which element to
access (excluding the index and just providing the name of the
list means that the program is operating on the entire list).

•Similar to objects, arrays employ dynamic memory allocation
(the name of the array is actually a reference to the array).

•Many utility methods exist.
•Several error checking mechanisms are available.

James Tam

Arrays

•An array of ‘n’ elements will have an index of zero for the first
element up to index (n-1) for the last element.

•The array index is an integer and indicates which element to
access (excluding the index and just providing the name of the
list means that the program is operating on the entire list).

•Similar to objects, arrays employ dynamic memory
allocation (the name of the array is actually a reference to
the array).

•Many utility methods exist.
•Several error checking mechanisms are available.

CPSC 233: Introduction to Data Structures, Lists

James Tam

Declaring Arrays

• Arrays in Java involve a reference to the array so creating an
array requires two steps:

1) Declaring a reference to the array
2) Allocating the memory for the array

James Tam

Declaring A Reference To An Array

•Format:
// The number of pairs of square brackets specifies the number of
// dimensions.
<type> [] <array name>;

•Example:
int [] arr;
int [][] arr;

CPSC 233: Introduction to Data Structures, Lists

James Tam

Allocating Memory For An Array

•Format:
<array name> = new <array type> [<no elements>];

•Example:
arr = new int [SIZE];
arr = new int [ROW SIZE][COLUMN SIZE];

(Both steps can be combined together):
int [] arr = new int[SIZE];

James Tam

Arrays: An Example

•The name of the online example is: listsFirstExample
public class Driver
{

public static void main (String [] args)
{

int i;
int len;
int [] arr;

CPSC 233: Introduction to Data Structures, Lists

James Tam

Arrays: An Example

Scanner in = new Scanner (System.in);
System.out.print("Enter the number of array elements: ");
len = in.nextInt ();
arr = new int [len];
System.out.println("Array Arr has " + arr.length + " elements.");
for (i = 0; i < arr.length; i++)
{

arr[i] = i;
System.out.println("Element[" + i + "]=" + arr[i]);

}
}

}

James Tam

Arrays

•An array of ‘n’ elements will have an index of zero for the first
element up to index (n-1) for the last element.

•The array index is an integer and indicates which element to
access (excluding the index and just providing the name of the
list means that the program is operating on the entire list).

•Similar to objects, arrays employ dynamic memory allocation
(the name of the array is actually a reference to the array).

•Many utility methods exist.
•Several error checking mechanisms are available.

- Null array references
- Array bounds checking

CPSC 233: Introduction to Data Structures, Lists

James Tam

Using A Null Reference

int [] arr = null;
arr[0] = 1; NullPointerException

James Tam

Exceeding The Array Bounds

int [] arr = new int [4];
int i;
for (i = 0; i <= 4; i++)

arr[i] = i; ArrayIndexOutOfBoundsException

(when i = 4)

CPSC 233: Introduction to Data Structures, Lists

James Tam

List Operations: Arrays (Creation)

•Simply declare an array variable
<array name> = new <array type> [<no elements>];

James Tam

List Operations: Arrays (Display)

•Unless it can be guaranteed that the list will always be full
(unlikely) then some mechanism for determining that the end of
the list has been reached is needed.

•If list elements cannot take on certain values then unoccupied
list elements can be ‘marked’ with an invalid value.

•Example: grades
100

75

65

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

0

80

-1

-1

-1

CPSC 233: Introduction to Data Structures, Lists

James Tam

List Operations: Arrays (Display: 2)

•If list elements can’t be marked then a special variable (“last”
index) can be used to mark the last occupied element.

•Alternatively a special variable can also be used to mark the
next element free.
[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

lastOccupiedElement = 3

James Tam

List Operations: Arrays (Search)

•Compare the item being searched for (“key”) and compare vs.
the list element.

Bob

Mary

Alice

Index[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Kayla

KaylaKey

Bob = Kayla? (no match)

Index Mary = Kayla? (no match)

Index Alice = Kayla? (no match)

Bruce

Index Kayla = Kayla? (Match found)

CPSC 233: Introduction to Data Structures, Lists

James Tam

List Operations: Arrays (Insertion)

•Insertion at the end.
- Some mechanism is needed to either find or keep track of the last occupied
element.

Bob

Mary

Alice Last

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Increment last (new index of last element)Kayla

James Tam

List Operations: Arrays (Insertion: 2)

•In order insertion.
- Some mechanism is needed to find the insertion point (search).
- Elements may need to be shifted.

123

125

135

155

161

166

167

167

169

177

178

165

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

CPSC 233: Introduction to Data Structures, Lists

James Tam

List Operations: Arrays (Removing Elements)

•A search is needed to find the element to remove.
•Depending upon the index of the element to be deleted, other
elements may need to be shifted.

123

125

135

155

161

166

167

167

Remove

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

James Tam

List Operations: Arrays (Destroying The Entire
List)

•Recall that Java employs automatic garbage collection.
•Setting the reference to the array to null will eventually allow
the array to be garbage collected.
<array name> = null;

•Note: many languages do not employ automatic garbage
collection and in those cases, either the entire array or each
element must be manually de-allocated in memory.

CPSC 233: Introduction to Data Structures, Lists

James Tam

Memory Leak

•A technical term for programs that don’t free up dynamically
allocated memory.

•It can be serious problem because it may result in a drastic
slowdown of a program.

James Tam

Linked Lists

•An alternate implementation of a list.
•The program code is somewhat more complex but some
operations are more efficient (e.g., additions and deletions don’t
require shifting of elements).

•Also linked lists tend to be more memory efficient that arrays.
- The typical approach with an array implementation is to make the array
larger than needed. (Unused elements are allocated in memory and the
space is wasted).

- With a linked list implementation, elements only take up space in memory
as they’re needed.
Start End

CPSC 233: Introduction to Data Structures, Lists

James Tam

List Elements: Nodes

Freight “data”

Connector

Node

Data (data)
Pointer/reference

(connector)

James Tam

Example: Defining A Node

public class BookNode
{

private Book data;
private BookNode next;

: : :
}

Information stored by each element

Connects list elements

CPSC 233: Introduction to Data Structures, Lists

James Tam

Example: Marking The Start Of The List

public class Manager
{

private BookNode head;
}

Case 1:
Empty list
head

null

Case 2: Non-
empty list
head

First node

James Tam

Linked Lists: Important Details

•Unlike arrays, many details must be manually and explicitly
specified by the programmer: start of the list, connections
between elements, end of the list.

•Caution! Take care to ensure the reference to the first element is
never lost.

Data Ptr Data Ptr Data Ptr

Linked
List

Head

1 The approximate equivalent of a pointer (“ptr”) in Java is a reference.

CPSC 233: Introduction to Data Structures, Lists

James Tam

More On Connections: The Next Pointer

•Because linked lists only create elements as needed a special
marker is needed for the end of the list.

•The ‘next’ attribute of a node will either:
- Contain a reference/address of the next node in the list.

- Contain a null value.

•(That means there is a reference to the start of the list, the next
pointer of each element can be used to traverse the list).

Data Next

Data Next Data Next ...

James Tam

List Operations: Linked Lists (Creation)

•After a type for the list has been declared then creating a new
list requires that an instance be created and initialized.

•Example:
BookNode head = null;

CPSC 233: Introduction to Data Structures, Lists

James Tam

List Operations: Linked Lists (Display)

•A temporary pointer/reference is used when successively
displaying the elements of the list.

•When the temporary pointer is null, the end of the list has been
reached.

•Graphical illustration of the algorithm:

•Pseudo code algorithm:
while (temp != null)

display node
temp = address of next node

Data Ptr Data Ptr Data Ptr

TempTemp
Temp

Temp

Head

James Tam

List Operations: Linked Lists (Search)

•The algorithm is similar to displaying list elements except that
there must be an additional check to see if a match has occurred.

•Conditions that may stop the search:

Temp

Data Ptr Data Ptr Data Ptr

Head

1. Temp = null (end)?

2. Data match?

CPSC 233: Introduction to Data Structures, Lists

James Tam

List Operations: Linked Lists (Search: 2)

•Pseudo code algorithm:
Temp refers to beginning of the list
If (temp is referring to empty list)

display error message “Empty list cannot be searched”
While (not end of list AND match not found)

if (match found)
stop search or do something with the match

else
temp refers to next element

James Tam

List Operations That Change List Membership

•These two operations (add/remove) change the number of
elements in a list.

•The first step is to find the point in the list where the node is to
be added or deleted (typically requires a search).

•Once the point in the list has been found, changing list
membership is merely a reassignment of pointers/references.
- Again: unlike the case with arrays, no shifting is needed.

CPSC 233: Introduction to Data Structures, Lists

James Tam

List Operations: Linked Lists (Insertion)

•Graphical illustration of the algorithm:

NULL

LIST

NEW
ELEMENT

Temp

James Tam

List Operations: Linked Lists (Insertion: 2)

•Graphical illustration of the algorithm:

NULL

LIST

NEW
ELEMENT

Temp

CPSC 233: Introduction to Data Structures, Lists

James Tam

List Operations: Linked Lists (Insertion: 3)

•Graphical illustration of the algorithm:

NULL

LIST

NEW
ELEMENT

Temp

James Tam

List Operations: Linked Lists (Insertion: 4)

•Pseudo code algorithm:
Node to be inserted refers to node after insertion point
Node at insertion point refers to the node to be inserted

CPSC 233: Introduction to Data Structures, Lists

James Tam

List Operations: Linked Lists (Removing Elements)

•Graphical illustration of the algorithm

NULL

LIST Remove

James Tam

List Operations: Linked Lists (Removing
Elements: 2)

•Graphical illustration of the algorithm

NULL

LIST Remove

CurrentPrevious

CPSC 233: Introduction to Data Structures, Lists

James Tam

List Operations: Linked Lists (Removing
Elements: 2)

•Graphical illustration of the algorithm

NULL

LIST Remove

CurrentPrevious

Node to be removed has been bypassed
(effectively deleted from the list)

James Tam

List Operations: Linked Lists (Removing
Elements: 3)

•Pseudo code algorithm:
Previous node refers to the node referred by current node

CPSC 233: Introduction to Data Structures, Lists

James Tam

List Operations: Linked Lists (Destroying The
Entire List)

•In Java: removing an entire list is similar to how it’s done with
the array implementation.
head = null;

•Important reminder: many languages to not employ automatic
garbage collection and in those cases each node must be
manually de-allocated in memory (step through each element in
the list and free up the memory but take care not to lose the
connection with the rest of the list).

James Tam

Linked List Example

•The full example can be found on the course web page and is
called: “listsSecondExample_linkedList.zip”

Driver

Menu
-aManager : Manager

-menuSelection : String

+Manager ()

+getSelection ()

+processSelection ()

Book
-name : String

+Book (newName :
String)

+getName(): String

+setName (newName :
String)

Manager
-head : BookNode

+Manager ()

+display ()

+add ()

+remove ()

BookNode
-data : Book

-next : BookNode

+BookNode ()

+BookNode (data:BookNode,

data:Book)

Etc.

CPSC 233: Introduction to Data Structures, Lists

James Tam

Linked List Example: Driver Class

public class Driver
{

public static void main (String [] args)
{

Menu aMenu = new Menu ();
aMenu.processSelection();

} // End of main.
} // End of class Driver.

James Tam

Linked List Example: Menu Class

public class Menu
{

private Manager aManager;
private String menuSelection;

public Menu ()
{

aManager = new Manager ();
menuSelection = null;

}

CPSC 233: Introduction to Data Structures, Lists

James Tam

Linked List Example: Menu Class (2)

public void display ()
{

System.out.println("\n\nLIST MANAGEMENT PROGRAM: OPTIONS");
System.out.println("\t(d)isplay list");
System.out.println("\t(a)dd new element to end of list");
System.out.println("\t(r)emove last element from the list");
System.out.println("\t(q)uit program");
System.out.print("Selection: ");

}

public void getSelection ()
{

Scanner in = new Scanner (System.in);
menuSelection = in.nextLine ();

}

James Tam

Linked List Example: Menu Class (3)

public void processSelection ()
{

do
{

display();
getSelection();

if (menuSelection.equals("d"))
aManager.display ();

else if (menuSelection.equals("a"))
aManager.add ();

else if (menuSelection.equals("r"))
aManager.remove ();

else if (menuSelection.equals("q"))
System.out.println ("Quiting program.");

CPSC 233: Introduction to Data Structures, Lists

James Tam

Linked List Example: Menu Class (4)

else
System.out.println("Please enter one of 'd','a','r' or 'q'");

} while (!(menuSelection.equals("q")));
}

}

James Tam

Linked List Example: Manager Class

public class Manager
{

private BookNode head;
public Manager ()
{

head = null;
}

public void display()
{

// Code for displaying list: details to be provided later
}

CPSC 233: Introduction to Data Structures, Lists

James Tam

Linked List Example: Manager Class (2)

public void add ()
{

// Code for displaying list: details to be provided later
}

public void remove ()
{

// Code for displaying list: details to be provided later
}

James Tam

Linked List Example: Class Node

public class BookNode
{

private Book data;
private BookNode next;

public BookNode ()
{

data = null;
next = null;

}

public BookNode (Book data,
BookNode next)

{
setData(data);
setNext(next);

}

CPSC 233: Introduction to Data Structures, Lists

James Tam

Linked List Example: Class Node (2)

public void setData (Book data) { this.data = data; }

public Book getData () { return data; }

public void setNext (BookNode next) { this.next = next; }

public BookNode getNext () { return next; }
}

James Tam

Traversing The List: Display

• Description:
• Steps (traversing the list to display the data portion of each node onscreen)

1. Start by initializing a temporary reference to the beginning of the list.
2. If the reference is ‘null’ then display a message onscreen indicating that

there are no nodes to display and stop otherwise proceed to next step.
3. While the temporary reference is not null:

a) Process the node (e.g., display the data onscreen).
b) Move to the next node by following the current node's next

reference (set the reference to refer to the next node).

CPSC 233: Introduction to Data Structures, Lists

James Tam

Traversing The List: Display (2)

public void display()
{

int i = 1;
BookNode temp = head;
System.out.println("Displaying list");
if (head == null)

System.out.println("\tList is empty");
while (temp != null)
{

System.out.println("\tTitle No. " + i + ": "+ temp.getData().getName());
i = i + 1;
temp = temp.getNext();

}
}

James Tam

Traversing The List: Display (3)

head

null

head

CPSC 233: Introduction to Data Structures, Lists

James Tam

Traversing The List: Display (4)

head

THE QUEEN'S FOOL:
A NOVEL

BORED OF
THE RINGS

SILENT HILL:
DYING INSIDE

THE BOOK OF
FIVE RINGS

James Tam

Adding A Node To The End Of The List

• Description:
• Variables

1. There are two references to the list:
a) Current reference: traverses the list from beginning to end.
b) Previous (to current reference): refers to the node immediately before the

node referred to by current. (If current refers to the first node then
previous is null – nothing comes before the first node).

CPSC 233: Introduction to Data Structures, Lists

James Tam

Adding A Node To The End Of The List (2)

• Steps:
1. Assign the current reference to the front of the list.
2. If the current reference is null, then the list is empty. Add the node to

the front of the list by changing the reference to the beginning (head)
and stop.

3. (“Two step” approach, an alternate is to “peek ahead”) Otherwise
traverse the list with two references, one reference (the current
reference) goes past the end of the list (to the null value), the other
reference (previous reference) stays one node behind the current
reference.

4. Attach the new node to the last node in the list (which can be reached
by the previous reference).

5. Whether the node is attached to an empty or non-empty list, the next
reference of the new node becomes null (to mark the end of the list).

James Tam

Adding A Node To The End Of The List (3)

public void add ()
{
System.out.print("Enter a title for the book: ");
Scanner in = new Scanner(System.in);
String newName = in.nextLine();
Book aBook = new Book (newName);
BookNode aBookNode = new BookNode(aBook,null);

if (head == null)
head = aBookNode;

CPSC 233: Introduction to Data Structures, Lists

James Tam

Adding A Node To The End Of The List (4)

else
{

BookNode current = head;
BookNode previous = null;
while (current != null)
{
previous = current;
current = current.getNext();

}
previous.setNext(aBookNode);

}
}

James Tam

Adding A Node To The End Of The List (5)

head

null
THE POEMS
OF HESIOD

aBook

CPSC 233: Introduction to Data Structures, Lists

James Tam

Adding A Node To The End Of The List (6)

head

THE TAO OF
JEET KUNE DO

aBook

VAMPIRE OF
THE MISTS

James Tam

Adding A Node To The End Of The List (7)

head

SPOCK MUST
DIE!

THE LURKING
FEAR

THE
NECRONOMICAN

THE ART OF
WAR

aBook

CPSC 233: Introduction to Data Structures, Lists

James Tam

Removing A Node From The List

Description:
• Main variables:

1. A temporary reference: refers to the node to be deleted. It is needed
so that the program can retain a reference to this node and free up
the memory allocated for it after the node has been ‘bypassed’ (step
4A on the next slides).

2. A previous reference: refer to the node just prior to the one to be
deleted. The ‘next’ field of this reference will be set to skip over
the node to be deleted and will instead point to the node that
immediately follows the node to be deleted.

3. The head reference: The actual reference (and not a copy) is needed
if the first node is deleted.

4. The search key – in this example it is a string but it could be any
arbitrary type as long as a comparison can be performed.

5. A boolean variable that stores that status of the search (the search
flag). (Start the search by assuming that it’s false and the flag is set
to true when a successful match occurs.

James Tam

Removing A Node From The List (2)

• Steps
1. Initialize the main variables.

a) The temporary reference starts at the front of the list.
b) The boolean flag is set to false (no matches have been found yet).
c) The previous reference is set to null (to signify that there is no element prior

to the first element).

2. If the list is empty (temporary reference is null) display a status message
to the user (e.g., “list is empty”) and stop the removal process.

3. While the end of the list has not been reached (temporary reference is not
null) AND no matches have been found yet (boolean flag is false) :
a) Compare the search key with the appropriate field in the node referred to by

the temporary reference.
b) If there’s a match then set the search flag to true (it’s true that a match has

been found now).
c) If no match has been found set the previous reference to the node referred to

by the temporary reference and move the temporary reference to the next
node in the list.

CPSC 233: Introduction to Data Structures, Lists

James Tam

Removing A Node From The List (3)

4. (At this point either the whole list has been traversed or there has been
successful match and the search has terminated early):

a. If the search flag is set to true then a match has been found.
i. If the first node is the one to be deleted (previous reference is null) then set the head

reference to the second node in the list.
ii. If any other node is to be deleted then bypass this node by setting the ‘next’ field of

the node referred to by the previous reference to the node immediately following the
node to be deleted.

iii. In both cases the temporary reference still refers to the node to be deleted. (If
applicable) free up the allocated memory using the temporary reference.

b. If the search flag is set to false no matches have been found, display a status
message to the user (e.g., “no matches found”).

James Tam

Removing A Node From The List (4)

public void remove ()
{
// CASE 1: EMPTY LIST
if (head == null)

System.out.println("List is already empty: Nothing to remove");

// CASE 2: NON-EMPTY LIST
else

{
BookNode previous = null;
BookNode current = head;
String searchName = null;
boolean isFound = false;
String currentName;
Scanner in = new Scanner(System.in);
System.out.print("Enter name of book to remove: ");
searchName = in.nextLine();

CPSC 233: Introduction to Data Structures, Lists

James Tam

Removing A Node From The List (5)

while ((current != null) &&
(isFound == false))

{
currentName = current.getData().getName();
if (searchName.compareToIgnoreCase(currentName) == 0)

isFound = true;
else
{

previous = current;
current = current.getNext();

}
}

James Tam

Removing A Node From The List (6)

// CASE 2A OR 2B: MATCH FOUND (REMOVE A NODE)
if (isFound == true)
{

System.out.println("Removing book called " + searchName);
// CASE 2A: REMOVE THE FIRST NODE
if (previous == null)

head = head.getNext();
// CASE 2B: REMOVE ANY NODE EXCEPT FOR THE FIRST

else
previous.setNext(current.getNext());

}
// CASE 3: NO MATCHES FOUND (NOTHING TO REMOVE).
else

System.out.println("No book called " + searchName + " in the
collection.");

}
}

}

CPSC 233: Introduction to Data Structures, Lists

James Tam

Removing A Node From The List (7)

•Case 1: Empty List

head

null

searchName:

isFound:

James Tam

•Case 2A: Remove first element

Removing A Node From The List (8)

head

searchName:

isFound:

SIDDHARTHA

SIDDHARTHA PRINCE OF LIES
I AM AN AMERICAN
SOLDIER TOO

CPSC 233: Introduction to Data Structures, Lists

James Tam

•Case 2B: Remove any node except for the first

Removing A Node From The List (9)

head

searchName:

isFound:

ENDGAME

A BRIEF HISTORY
OF TIME ENDGAMECHINESE GUNG FU

James Tam

•Case 3: No match

Removing A Node From The List (10)

head

searchName:

isFound:

MOBY DICK

A CHRISTMAS
CAROL

SPYWORLDTHE PRICE OF FREEDOM:
A WING COMMANDER NOVEL

CPSC 233: Introduction to Data Structures, Lists

James Tam

Arrays Of Objects (References)

•An array of objects is actually an array of references to objects
e.g., Foo [] arr = new Foo [4];

•The elements are initialized to null by default
arr[0].setNum(1); NullPointerException

James Tam

Arrays Of References To Objects: An Example

•The complete example will be covered in tutorial and can be
found in UNIX under:
/home/233/tutorials/lists/listsTutorialExample_arrayReferences.zip

CPSC 233: Introduction to Data Structures, Lists

James Tam

The Book Class

public class Book
{

private String name;
public Book (String aName)
{

setName(aName);
}
public void setName (String aName)
{

name = aName;
}
public String getName ()
{

return name;
}

}

James Tam

The Manager Class

public class Manager
{

public final int MAX_ELEMENTS = 10;
private Book [] bookList;
private int lastElement;

public Manager ()
{

bookList = new Book[MAX_ELEMENTS];
int i;
for (i = 0; i < MAX_ELEMENTS; i++)
{

bookList[i] = null;
}
lastElement = -1;

}

CPSC 233: Introduction to Data Structures, Lists

James Tam

The Manager Class (2)

public void display()
{

int i;
System.out.println("Displaying list");
if (lastElement == -1)

System.out.println("\tList is empty");
for (i = 0; i <= lastElement; i++)
{

System.out.println("\tTitle No. " + (i+1) + ": "+ bookList[i].getName());
}

}

James Tam

The Manager Class (3)

public void add ()
{

String newName;
Scanner in;
if ((lastElement+1) < MAX_ELEMENTS)
{

System.out.print("Enter a title for the book: ");
in = new Scanner (System.in);
newName = in.nextLine ();
lastElement++;
bookList[lastElement] = new Book(newName);

}
else
{

System.out.print("Cannot add new element: ");
System.out.println("List already has " + MAX_ELEMENTS + "
elements.");

}
}

CPSC 233: Introduction to Data Structures, Lists

James Tam

The Manager Class (4)

public void remove ()
{

if (lastElement > -1)
{

bookList[lastElement] = null;
lastElement--;
System.out.println("Last element removed from list.");

}
else
{

System.out.println("List is already empty: Nothing to remove");
}

}
}

James Tam

The Menu Class

public class Menu
{

private Manager aManager;
private String menuSelection;

public Menu ()
{

aManager = new Manager ();
menuSelection = null;

}

CPSC 233: Introduction to Data Structures, Lists

James Tam

The Menu Class (2)

public void display ()
{

System.out.println("\n\nLIST MANAGEMENT PROGRAM: OPTIONS");
System.out.println("\t(d)isplay list");
System.out.println("\t(a)dd new element to end of list");
System.out.println("\t(r)emove last element from the list");
System.out.println("\t(q)uit program");
System.out.print("Selection: ");

}

public void getSelection ()
{

Scanner in = new Scanner (System.in);
menuSelection = in.nextLine ();

}

James Tam

The Menu Class (3)

public void processSelection ()
{

do
{

display();
getSelection();
if (menuSelection.equals("d"))

aManager.display ();
else if (menuSelection.equals("a"))

aManager.add ();
else if (menuSelection.equals("r"))

aManager.remove ();
else if (menuSelection.equals("q"))

System.out.println ("Quitting program.");
else

System.out.println("Please enter one of 'd','a','r' or 'q'");
} while (!(menuSelection.equals("q")));

}
}

CPSC 233: Introduction to Data Structures, Lists

James Tam

The Driver Class

public class Driver
{

public static void main (String [] args)
{

Menu aMenu = new Menu ();
aMenu.processSelection();

} // End of main.
} // End of class Driver.

James Tam

After This Section You Should Now Know

•What is a data structure
•How a data structure may be defined in Java
•Common list operations
•How a Java array employs dynamic memory allocation
•What is a memory leak
•How the common list operations are implemented using linked
lists

•What are the advantages and disadvantages of implementing a
list as an array vs. as a linked list

