

- Mandatory: Chapter 1
- Optional: None

At the end of this section, the student will be able to:

1. Judge the design of a spreadsheet
2. Divide a spreadsheet into five sections
3. Understand the role of each section

- Good character
- Easy to build
- Easy to read
- Easy to use
- Easy to change
- Error free

Spreadsheet Properties

	A	B		C	D		E	

Example of Poor Spreadsheet

- Introduction:

- Introduction, title, description, and contents
- Model:
- Main form data
- Data Dictionary
- Explains columns and calculations
- Data:

Data used in your sheet

- Dashboard
- Visual reports (charts)

Contents of a Spreadsheet

- The actual data forms are determined by the purpose of the spreadsheet
- What is the function of the sheet?
- Sections should be in different 'tabs' (sheets)
- Especially for larger examples

Introduction Data /Model / DataDictionary / Dashboard

1. Make a formal introduction
2. Title of the sheet must be informative
3. Declare the purpose
4. Give clear instructions
5. Reference critical ideas
6. Map the content

Intro Section - Design Tips

- Intro section should give the user a clear idea of how the sheet ties with the real world
- Intro devices:

Include a title that passes critical info
Declare the purpose
Give directions on how to use the model
Include references
Include a table of contents

- Title must at least include: Name of the model
Date
Name of creator
- Properties of a title:

Short
Apt (to the point)
Memorable

- Tell the spreadsheet user what the spread sheet is all about

5 Overview
6 This spreadsheet was created to aid in deciding which US state we
7 The US state must:
8 1. Have a warm climate.
9 2. Have a low crim rate.
10 3. Be close to Ottawa.
11

Intro - 3. Declare the Purpose

- Give clear step-by-step Instructions on how to use the spreadsheet
- Especially important if the user needs to later make changes to the data or calculations
- Not necessary for small examples (such as our US States example)
- Cite all resources used to create the spreadsheet if any
- Use APA or other format for citation: J. Nevison, The Elements of Spreadsheet Style, Prentice-Hall, 1987
http://pages.cpsc.ucalgary.ca/~tamj/2007/203W/assignments/references.html (if you have no clue as to what format to use)
- A Table of Contents (TOC) can be a good idea too

Peeking into Computer Science © Jalal Kawash 2010

- Includes raw and calculated data

- This is the actual spread sheet

- Model includes assumptions and calculations

- Explain the model:
- Should provide three levels of explanation:

Explain the values appearing in the model Explain tricky formulas A complete listing of all used formulas

Model Section

- Explains the meaning of your data
- Give each field:
- A type: categorization, raw data, column calculation, row calculation
A data type: text, number, integer, percentage, etc...
- A sheet/cell reference: the sheet where the field is and where in the sheet (cell range)
A description: brief narrative

Data Dictionary

- Visual Charts and conclusions

- Analyze and comment on every chart
- Include a conclusion/discussion section

Abstraction

The power to simplify

- Problems (and solutions) can be overwhelming
- Too much details
- Abstraction: hiding irrelevant details
- Library
- Very complex
- To an end-user, it can be abstracted by the circulation desk

Abstraction Example

- Car
- Also very complex
- To driver, it can be abstracted by how to operate it
- To a passenger, it is simply a commuting device

- Develop an algorithm for a simple robot (similar in movement capabilities to a Roomba ${ }^{\text {TM }}$).
- Movement:
- The robot can move forward one distance unit (a 'square').
- Rotation:
- If forward motion is not possible then the robot can rotate left or right by 90 degrees.
Short range sensors:
- One is mounted forwards, the other is mounted on the right.
- The sensors check for obstacles in the next square.

Another Problem: Robotic Movement¹

- What does the robot need to do:
- Find a wall/obstacle.
- Hug the wall, indefinitely moving forward.
- Input:

Whatever is detected by the sensors (front, right).

- Output:
- The robot's movement

Specifying The Problem

Since the robot can either move onto a square that's empty or avoid a square that is occupied, the world can be simplified into two cases:

- The destination square is empty: 'space'.
- The destination square is not empty: 'wall' (contains a wall, furniture, person, pet etc.)
- Details about exactly why the destination isn't empty isn't important so simplify the problem.

- Search for the wall
- Once found, keep it to the robot's right
- Move forward

Each move, make sure the wall is still to the robot's right.
(This means there should be a space in front and the wall to the right).

- Robot's modes:

Search for the wall

- Hug the wall

Solution: The Generic Algorithm For Movement

Repeat the following steps, until this phase is done (wall found, change to the wall hugging mode) -If RS = W, then done this phase
Right sensor detects a wall
-If $\mathbf{F S}=\mathbf{W}$, then \mathbf{L}, done this phase

- Front sensor detects a wall, rotate left -If $\mathbf{F S}=\mathbf{S}$, then \mathbf{F}

Right sensor senses a space, take a step forward

- Need to make sure that the wall is not "lost" during movement.
- Complexity: all cases must be considered.

Algorithm: Hug The Wall

Input
$F S=W$

Repeat the following steps:

1. If $\mathbf{R S}=\mathbf{W}$ and $\mathbf{F S}=\mathbf{S}$, then \mathbf{F}
2. If $\mathbf{F S}=\mathbf{W}$, then \mathbf{L}
3. If $\mathbf{R S}=\mathbf{S}$ and $\mathbf{F S}=\mathbf{S}$, then \mathbf{R} and \mathbf{F}

Algorithm: Hug The Wall

