
10/1/2012

1

© Jalal Kawash 2010

Trees &
Information Coding

Peeking into Computer Science

© Jalal Kawash 2010 Peeking into Computer Science

Reading Assignment

 Mandatory: Chapter 3 – Section 3.5

2

10/1/2012

2

Information Coding
An application of trees

3

© Jalal Kawash 2010 Peeking into Computer Science

Objectives

At the end of this section, the student will be able
to:

1. Understand the need for variable-length coding
(VLC)

2. Understand how compression works

3. Calculate the space savings with VLC

4. Understand decoding problems with VLC

5. Define non-prefix VLC

6. Use Huffman’s algorithm and binary trees to
assign optimized non-prefix VLC

7. Represent BL trees as nested lists

10/1/2012

3

© Jalal Kawash 2010 Peeking into Computer Science

Back to Coding (JT: Review)

 Assume we have a file that contains data
composed of 6 symbols only:

 A, I, C, D, E, and S (for space)

ACE DICE AIDE CAID
EAD DAICED …

5

© Jalal Kawash 2010 Peeking into Computer Science

Back to Coding (JT: Review)

 Assume we have a file that contains data
composed of 6 symbols only:

 A, I, C, D, E, and S (for space)

ACESDICESAIDESCAID
EADSDAICED …

6

10/1/2012

4

© Jalal Kawash 2010 Peeking into Computer Science

Coding (JT: Review)

 If the file has 1000 characters, how many
bits (0s and 1s) are needed to code the
file?

7

© Jalal Kawash 2010 Peeking into Computer Science

Coding (JT: Review)

 The first question is

 How many symbols do we need to
represent each character?

 The objective is to keep the size of the file
as small as possible

 We have 6 characters (messages) and two
symbols (0 and 1)

 2 is not enough, since 22 is 4

8

10/1/2012

5

© Jalal Kawash 2010 Peeking into Computer Science

2 bits are not enough (JT: Review)

 00 for A

 01 for S

 10 for I

 11 for E

 We cannot represent the rest C and D

 3 works, since 23 is 8, so we can represent
up to 8 characters and we only have 6

9

© Jalal Kawash 2010 Peeking into Computer Science

3 bits are more than enough (JT:
Review)

 Say
 000 for A
 001 for S
 010 for I
 011 for E
 100 for C
 101 for D
 110 not used
 111 not used

10

10/1/2012

6

© Jalal Kawash 2010 Peeking into Computer Science

Coding (JT: Review)

 If the file has 1000 characters, how many
bits (0s and 1s) are needed to code the
file?

 Each character needs 3 bits

 Hence, we need 3x1000 = 3000 bits

11

© Jalal Kawash 2010 Peeking into Computer Science

Compression

 How does file compression work?

 Huffman’s codes reduce the size of a file
by using variable-length codes for
characters

12

10/1/2012

7

© Jalal Kawash 2010 Peeking into Computer Science

Compression

 Analyzing the file we find that

 35% are S
 28% of the characters are A
 20% are E
 7% are I
 6% are C
 4% are D

 Some characters are more frequent than others

13

© Jalal Kawash 2010 Peeking into Computer Science

Compressed File Size

 If we use this coding, what is the size of the file?
 350 S’s (35% of 1000) require 700 bits (2 bits

for each S)
 200 E’s require 400 bits (2 bits)
 280 A’s require 560 bits (2 bits)
 70 I’s require 210 bits (3 bits)
 60 C’s require 240 bits (4 bits)
 40 D’s require 160 bits (4 bits)

 Total is 2270 bits
 Recall that with fixed codes, the size is 3000 bits
 Compressed file size is about 76% of original

size

14

10/1/2012

8

© Jalal Kawash 2010 Peeking into Computer Science

Compressed File Size

 If we use this coding, what is the size of the file?
 350 S’s (35% of 1000) require 700 bits (2 bits

for each S)
 200 E’s require 400 bits
 280 A’s require 560 bits
 70 I’s require 210 bits
 60 C’s require 240 bits
 40 D’s require 160 bits

 Total is 2270 bits
 Recall that with fixed codes, the size is 3000 bits
 Compressed file size is about 76% of original

size

15

© Jalal Kawash 2010 Peeking into Computer Science

Problems with Variable-Length
Codes

 Not any variable-length code works

 Assume A’s code is 0

 C’s code is 1

 E’s code is 01

 The code 0101 could correspond to ACE,
EAC, ACAC, or EE

16

10/1/2012

9

© Jalal Kawash 2010 Peeking into Computer Science

Prefix Codes

 Codes that work must have the property:

 No code can be the prefix of another code

 Called Non-Prefix Codes

 0 is a prefix of 01, this is why our coding
failed

 Another example: 0101 is a prefix of
010111

 17

© Jalal Kawash 2010 Peeking into Computer Science

Non-Prefix Codes

 Non-Prefix codes can be generated using a
binary tree

 Start from a binary tree

 Label edges to left children with 0

 Label edges to right children with 1

 Record the labels on the path from the root
to the leaves

 Each path corresponds to a non-prefix code

 18

10/1/2012

10

© Jalal Kawash 2010 Peeking into Computer Science

Non-Prefix Codes from a Binary
Tree

0

0

0

0

0

1

1 1

1

1

19

© Jalal Kawash 2010 Peeking into Computer Science

Non-Prefix Codes from a Binary
Tree

A’s code: 00

B’s 0100

C’s 0101

D’s 011

E’s 10

F’s 11

E F A

D

C B

0

0

0

0

0

1

1 1

1

1

20

10/1/2012

11

© Jalal Kawash 2010 Peeking into Computer Science

No code is a prefix of another

00

0100

0101

011

10

11

E F A

D

C B

0

0

0

0

0

1

1 1

1

1

21

© Jalal Kawash 2010 Peeking into Computer Science

No Confusion

A:00, B:0100, C:0101, D:011,
E:10, F:11

010000011

No other interpretation
◦ Parsing left to right

◦ (JT’s extra: parsing refers to ‘reading’ or
‘breaking into meaningful portions’)

B A D

22

10/1/2012

12

© Jalal Kawash 2010 Peeking into Computer Science

No Confusion

A:00, B:0100, C:0101, D:011,
E:10, F:11

111010011

 So How do we generate such codes?

F E D E

23

© Jalal Kawash 2010 Peeking into Computer Science

Huffman’s Coding

 Build a binary tree

 The characters in a file are the leaves

 The most frequent characters should be
closer to the root, generating shorter
codes

 Assign the codes, based on this tree

24

10/1/2012

13

© Jalal Kawash 2010 Peeking into Computer Science

Huffman's Coding – Step 1

1. Assign to each symbol its weight
(frequency)

Each of these is a tree of size one!

A C D E S I

35 28 6 4 20 7

25

© Jalal Kawash 2010 Peeking into Computer Science

Huffman's Coding – Step 2

2. Choose two trees that have the
minimum weights

◦ Replace these two trees with a new tree with new root

◦ Make the tree with the smaller weight a right child

◦ The weight of the new tree is the sum of old weights
(JT: next slide)

A C D E S I

35 28 6 4 20 7

D C

New tree

New tree weight 6+4 = 10

26

10/1/2012

14

© Jalal Kawash 2010 Peeking into Computer Science

Huffman's Coding – Step 2

2. Choose two trees that have the
minimum weights

◦ Replace these two trees with a new tree with new root

◦ Make the tree with the smaller weight a right child

◦ The weight of the new tree is the sum of old weights

A E S I

35 28 20 7

D C

10

27

© Jalal Kawash 2010 Peeking into Computer Science

Huffman's Coding – Repeat

 Repeat Step 2 until we have a single tree

A E S I

35 28 20 7

D C

10

28

10/1/2012

15

© Jalal Kawash 2010 Peeking into Computer Science

Step 2 Again

2. Choose two trees that have the minimum weights

◦ Replace these two trees with a new tree with new root

◦ Make the tree with the smaller weight a right child

◦ The weight of the new tree is the sum of old weights

A E S I

35 28 20 7

D C

10

D C I

29

© Jalal Kawash 2010 Peeking into Computer Science

Step 2 Again

2. Choose two trees that have the minimum weights

◦ Replace these two trees with a new tree with new root

◦ Make the tree with the smaller weight a right child

◦ The weight of the new tree is the sum of old weights

A E S I

35 28 20 7

D C

10

I

D C

New tree weight 10+7 = 17

30

10/1/2012

16

© Jalal Kawash 2010 Peeking into Computer Science

 A S

35 28

E

20

I

D C

17
31

© Jalal Kawash 2010 Peeking into Computer Science

Step 2 Again

 A S

35 28

E

20

I

D C

17

32

10/1/2012

17

© Jalal Kawash 2010 Peeking into Computer Science

 S

35

A

28

E

20

I

D C

17

33

© Jalal Kawash 2010 Peeking into Computer Science

 S

35

A

28

E

I

D C

Weight is 20+17 = 37

E

20
37

34

10/1/2012

18

© Jalal Kawash 2010 Peeking into Computer Science

 S

35

A

28

E

I

D C

37

Weight is 20+17 = 37

35

© Jalal Kawash 2010 Peeking into Computer Science

 S

35

A

28

E

I

D C

37

Weight is 35+28 = 63

63

36

10/1/2012

19

© Jalal Kawash 2010 Peeking into Computer Science

S A

E

I

D C

37
63

37

© Jalal Kawash 2010 Peeking into Computer Science

S A E

I

D C

37

63

38

10/1/2012

20

© Jalal Kawash 2010 Peeking into Computer Science

S A E

I

D C

39

© Jalal Kawash 2010 Peeking into Computer Science

3. Label left edges with 0 and right
edges with 1

Step 3

S A

E

I

D C

0

0 0

0

0

1

1 1

1

1

40

10/1/2012

21

© Jalal Kawash 2010 Peeking into Computer Science

 Read the labels on the path from the
root to each leaf, this is its code

S A

E

I

D C

0

0 0

0

0

1

1 1

1

1

41

© Jalal Kawash 2010 Peeking into Computer Science

 A’s code is 01

S A

E

I

D C

0

0 0

0

0

1

1 1

1

1

42

10/1/2012

22

© Jalal Kawash 2010 Peeking into Computer Science

 A’s code is 01
 C’s is 1100
 S’s is 00
 E’s is 10
 D’s is1101
 I’s is 111

S A

E

I

D C

0

0 0

0

0

1

1 1

1

1

43

© Jalal Kawash 2010 Peeking into Computer Science

More Frequent Characters have
shorter codes

 35% are S (00, 2 bits)

 28% are A (01, 2 bits)

 20% are E (10, 2 bits)

 7% are I (111, 3 bits)

 6% are C (1100, 4 bits)

 4% are D (1101, 4 bits)

44

10/1/2012

23

© Jalal Kawash 2010 Peeking into Computer Science

Recall This Analysis?

 If we use this coding, what is the size of the file?
 350 S’s (35% of 1000) require 700 bits (2 bits

for each S)
 280 A’s require 560 bits
 200 E’s require 400 bits
 70 I’s require 210 bits
 60 C’s require 240 bits
 40 D’s require 160 bits

 Total is 2270 bits
 Recall that with fixed codes, the size is 3000 bits
 Compressed file size is about 76% of original

size

45

© Jalal Kawash 2010 Peeking into Computer Science

David Huffman

 1925-1999

 US Electrical Engineer

 Contributions in coding theory, signal
design for radar and communications, and
logic circuits

 He wrote his coding algorithm as a
graduate students at MIT

46

10/1/2012

24

© Jalal Kawash 2010 Peeking into Computer Science

Concluding Notes

 Even though coding gave C and D codes
of length 4 (compared to 3 in fixed
coding), it was beneficial

 No code generated by Huffman’s method
can be a prefix of another code

 Many compression tools use a
combination of different coding methods,
Huffman’s is among them

47

