

- Mandatory: Chapter 2 - Section 2.1

By the end of this section, you will be able to:
1.Define a proposition
2.Define and combine the logic operators: AND, OR, NOT, XOR, and implies
3.Use truth tables to determine equivalence of propositions
4.Determine if a proposition is a tautology, contradiction, or contingency

- A proposition is a statement whose value is either TRUE or FALSE
- It is snowing today
- I am not older than you
- Canada is the largest country
- Canada shares a border with the US

Propositions and Truth Values

- $\mathrm{X}>12$
- Mr. X is taller than 250 cm
- $X+Y=5$
- Mrs. Y weighs 50kg
- Unless we know what the values of X and Y are, these are not propositions
- The number 5
- lol!

JT's Extra: Not Propositions

- Propositions can be built from other propositions using logical operators: AND, OR, NOT, and XOR (exclusive OR)
- It is raining today AND it is very warm
- At 12:00 today, I will be eating OR I will be home (inclusive OR)
- I will be either at the beach OR hiking (XOR)
- I will NOT be home at 6
- The popular usage of the logical AND applies when $A L L$ conditions must be met (very stringent).
- In terms of logic: 'AND' applies when all propositions must be true.
Example: I picked up all the kids today.
- Picked up son AND picked up daughter.

JT"s Extra: Logical AND

- The correct everyday usage of the logical OR applies when ATLEAST one condition must be met (less stringent).
- In terms of logic: 'OR' applies when one or more propositions are true.
- Example:
- Using the 'Peeking' book OR using the 'Alice' book
- The everyday usage of logical NOT negates (or reverses) a statement.
- In terms of logic: 'NOT' reverses a proposition (true becomes false and false becomes true).
- I am finding this class quite stimulating and exciting....NOT!!! Negation of the statement/condition
- Bachelor of Commerce (Year 1) Required Grade 12 High School Subject
- English 30 or ELA 30-1 and
- Pure Mathematics 30 and
- Subject from Group A or B

Eligible tuition fees

Generally, a course qualifies if it was taken at the post-secondary level or (for individuals aged 16 or over at the end of the year) it develops or improves skills in an occupation and the educational institution has been certified by Human Resources and Social Development Canada. In addition, you must have taken the course in 2007.

Example: Income Tax Guicle

Line 349 - Donations and gifts

You can claim donations either you or your spouse or common-law partner made. For more information about donations and gifts, or if you donated any of the following:

- gifts of property other than cash;
- gifts to organizations outside Canada;
- gifts to Canada, a province, or a territory made after 1997 and agreed to in writing before February 19, 1997.

Example: Income Tax Guicle

- If A is a proposition,
- then $\neg \mathrm{A}$ is a proposition
- that is true when A is false
- And false when A is true
- $\neg \mathrm{A}$ is read NOT A

It is raining today
It is not raining today

- If A and B are a propositions,
- then $A \wedge B$ is a proposition
- that is true when both A and B are true
- otherwise, it is false
- $A \wedge B$ is read A and B
- If A and B are a propositions,
- then $A \vee B$ is a proposition
- that is false when both A and B are false
- otherwise, it is true
- $A \vee B$ is read A or B

\mathbf{A}	\mathbf{B}
$\mathbf{A} \boldsymbol{B}$	
\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{F}

Truth Table for Conjunction

A	B	AOR B
\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{F}

It is raining today or it is cold

JT: Column A
JT: Column B
Truth Table for Disjunction

- JT's Extra: sometimes the everyday usage of 'OR' does not correspond to 'Logical OR'.
- To be eligible for the job, you have to be above 21 or attending a post-secondary institution
- We'll drive you to your place; my friend or I will be driving your car

Inclusive Vs, Exclusive OR

- If A and B are a propositions,
- then $A \oplus B$ is a proposition
- that is true when exactly one of A and B is true
- otherwise, it is false
- $A \oplus B$ is read A xor B

\mathbf{A}	\mathbf{B}	$A_{\bullet B}$
\mathbf{T}	\mathbf{T}	\mathbf{F}
\mathbf{T}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{F}

It will be at home or at school

Truth Table for XOR
A xor $B=(A$ or $B)$ and not $(A$ and $B)$

A	в	${ }^{\text {A }}$ B	A ${ }^{\text {B }}$	A^B	(E)
T	T	F	T	T	F
T	F	T	T	F	T
F	T	T	T	F	T
F	F	F	F	F	T

$A \oplus B=(A \vee B) \wedge \neg(A \wedge B)$
KOR is Redundant


```
C D
\begin{tabular}{|c|c|c|c|c|}
\hline \(A^{\text {a }}\) B & A \({ }^{\text {¢ }}\) & A, \({ }^{\text {B }}\) & (a, \({ }^{\text {a }}\) & C^D \\
\hline F & T & T & F & F \\
\hline T & T & F & T & T \\
\hline T & T & F & T & T \\
\hline F & F & F & T & F \\
\hline
\end{tabular}
```

$A \oplus B=(A \vee B) \wedge \neg(A \wedge B)$

	C	D		
$\overline{A \oplus B}$		A^B	(A, B)	C^D
F	T	T	F	F
T	T	F	T	T
T	T	F	T	T
F	F	F	T	F

$A \oplus B=(A \vee B) \wedge \neg(A \wedge B)$

- Use a truth table to show that the following propositions are equivalent
- $\neg(A \wedge B)=(\neg A) \vee(\neg B)$
- I never drink wine at the beach
- It is never the case that I drink wine AND I am at the beach
- It is always the case that I do NOT drink wine OR I am NOT at the beach

DeMorgan's Rules

Truth Table

Truth Tables in Excel

- Use a truth table to show that the following propositions are equivalent
- $\neg(A \vee B)=(\neg A) \wedge(\neg B)$
- It is never the case that I am bored OR tired
- It is always the case that I am NOT bored AND NOT tired
- 1806-1871
- British Mathematician born in India
- Wrote more than 1000 articles!
- He introduced Mathematical Induction in1838

- If A and B are a propositions,
- then $A \rightarrow B$ is a proposition
- that is false when A is true and B is false
- otherwise, it is true
- $\mathrm{A} \rightarrow \mathrm{B}$ is read if A then B, or A implies B
- If you have a Canadian passport, then you're a Canadian citizen
- A = you have a Canadian passport
- B = you're a Canadian citizen
- Logical expression:
- $A \rightarrow B$
- If you have a Canadian passport, then you're a Canadian citizen
- Maybe you have a Canadian passport (T) and you're a Canadian citizen (T)

JT: Can be true

- Maybe you do not have a Canadian passport (F) and you're a Canadian citizen (T)
- JT: Can be true
- Maybe you do not have a Canadian passport (F) and you're not a Canadian citizen (F)
- JT: Can be true
- It is not the case that (you have a Canadian passport (T) and you're not a Canadian citizen) (F)

JT: Claim cannot be true (i.e., it's a False claim)

\mathbf{A}	\mathbf{B}	$\mathrm{A} \rightarrow \mathrm{B}$
\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{T}

If you have a DL, then you can drive

- $A \rightarrow B$ is logically equivalent to:
- $\neg A \vee B$
- Prove it using a truth table
- If you have a Canadian passport, then you're a Canadian citizen
- You do not have a Canadian passport or you're a Canadian Citizen
- $A \rightarrow B$ is logically equivalent to:
- $\neg \mathrm{B} \rightarrow \neg \mathrm{A}$
- If you have a Canadian passport, then you're a Canadian citizen
- If you you're not a Canadian citizen, then you do not have a Canadian passport
- If a complex proposition does not have brackets apply operators in the following order

1. ᄀ
2. \wedge or \vee or xor, left to right
3. \rightarrow

- $\neg A \wedge B=(\neg A) \wedge B$
- This is different from $\neg(A \wedge B)$
- $A \vee B \wedge C=(A \vee B) \wedge C$

Precedence

- A tautology is a proposition that is always true
- At the end, I will pass the course or I will not pass it
- $A=I$ will pass the course
- $A \vee(\neg A)$

- A contradiction is a proposition that is always false
- The past season, the Flames won the Stanley Cup and the Oilers won the Stanley Cup
- If the Oilers won, then the Flames lost
- $\mathrm{A}=$ The Flames won
- $A \wedge(\neg A)$

- A contingency is a proposition that is neither a contradiction nor a tautology
- This season, the Flames will win the Stanley Cup

