
8/31/2012

1

Getting Started With Python

Programming

•Tutorial: creating computer programs

•Variables and constants

• Input and output

•Operators

•Common programming errors

•Formatted output

•Programming style

Slide # 2

James Tam

Python

• This is the name of the programming language that will be used

to illustrate different programming concepts this semester:
–My examples will be written in Python

–Your assignments will be written in Python

• Some advantages:
–Free

–Powerful

–Widely used (Google, NASA, Yahoo, Electronic Arts, some UNIX scripts
etc.)

• Named after a British comedy “Monty Python’s Flying Circus”

 Official website (Python the programming language, not the

Monty Python comedy troop): http://www.python.org

http://www.python.org/

8/31/2012

2

Slide # 3

James Tam

Online Help

• SAFEST APPROACH for working at home (recommended).
–Remotely login to the Computer Science network

–Example: Connect using a remote login program such as SSH
• Info: http://pages.cpsc.ucalgary.ca/~tamj/231/starting/ssh.html)

• Download: http://www.ucalgary.ca/it/software/downloads (SSH comes with
MacOS so no download is needed. Alternative programs such as Fugu or Apple
Terminal may be downloaded and installed).

–(SSH needs to be installed but it is far easier to install SSH than it is to
install Python).

• Alternative (not recommended): Getting Python (get version
3.X and not version 2.X)

–http://www.python.org/download/

–Requires that Python is configured (the “path”) on your computer (it is
not mandatory to install Python at home, follow these instructions
carefully, missteps occur at your own peril!)
• http://docs.python.org/using/windows.html

• http://docs.python.org/using/unix.html

• http://docs.python.org/using/mac.html

Slide # 4

James Tam

Online Help (2)

–(If you have installed Python on your own computer and still

can’t get ‘Python’ to run – this approach works although it’s

a ‘inelegant’ solution).

• Note where you installed Python (folder or directory)

• Create and run your Python programs from this location.

http://pages.cpsc.ucalgary.ca/~tamj/231/starting/ssh.html
http://www.ucalgary.ca/it/software/downloads
http://www.python.org/download/
http://docs.python.org/using/windows.html
http://docs.python.org/using/unix.html
http://docs.python.org/using/mac.html

8/31/2012

3

Slide # 5

James Tam

Online Help (3)

• Explanation of concepts (for beginners: along with examples to

illustrate)

–http://docs.python.org/py3k/tutorial/index.html

• Information about Python libraries (more advanced: useful for

looking up specific details of pre-created Python functions after

you have a general idea of how things work e.g., what is the

exact wording of the function used to open a file).

–http://docs.python.org/py3k/library/index.html

• General help (includes the above two help links and more):

–http://docs.python.org/py3k/

Slide # 6

James Tam

The Process Of Creating A Computer Program

Program Creation

• A person (programmer) writes a

computer program (series of

instructions).

• The program is written and

saved using a text editor.

• The instructions in the

programming language are high

level (look much like a human

language).

Translation

• A special computer program (translator) translates

the program written by the programmer into the

only form that the computer can understand

(machine language/binary)

Execution

• The machine language

instructions can now be

directly executed by the

computer.

http://docs.python.org/py3k/tutorial/index.html
http://www.python.org/doc/
http://docs.python.org/py3k/library/index.html
http://docs.python.org/py3k/

8/31/2012

4

Slide # 7

James Tam

Location Of My Online Examples

• Finding them via the WWW:

–URL: http://pages.cpsc.ucalgary.ca/~tamj/231/examples/

• Finding them in UNIX when you are logged onto a computer in

the lab (or remotely logged in using a program like SSH)

–Directory: /home/231/examples

• The locations of the example programs that are specific for this

section of notes (each section will have be located in a sub-

directory/sub-link):

–http://pages.cpsc.ucalgary.ca/~tamj/231/examples/intro

– /home/231/examples/intro

Slide # 8

James Tam

An Example Python Program

• Program name: small.py

print ("hello")

Filename: small.py

http://pages.cpsc.ucalgary.ca/~tamj/231/examples/
http://pages.cpsc.ucalgary.ca/~tamj/231/examples/intro

8/31/2012

5

Slide # 9

James Tam

Creating Programs: One Operating System

• To translate/run your program type “Python <filename.py>” at
the command line.
– The first example program would be executed by typing “python

small.py”
– For a program whose filename is called “output1.py” you would type

“python output1.py”.

– If you didn’t catch it: Make sure the exact and complete filename is

entered (even the “dot-py” suffix).

• The computers in the Computer Science lab have already been
set up so don’t need to do any installing or preconfiguring of
Python.
– This applies even if you work remotely from home using a program such

as SSH.
– On the Computer Science computers: make sure you are running the

correct version of python by typing “python3” (not just “python”)
• E.g., “python3 small.py”

Slide # 10

James Tam

Creating Programs: One Operating System (2)

• Working on your own computer: When you translate/run
your program in the command window make sure that your
command line is in the same location as your Python program
(‘inelegant but works’).

• Alternatively you have set up your computer so it ‘knows’
where python has been installed (e.g., setting the ‘path’ in
Windows).

–See earlier slide: “…follow these instructions carefully, missteps occur at
your own peril!”

–The computers in the CPSC lab have already been set up properly.

The Python program is in

another location.

8/31/2012

6

Slide # 11

James Tam

Displaying String Output

• String output: A message appears onscreen that consists of a

series of text characters.

• Whatever is contained with the quotes (single or double) is

what appears onscreen.

–Don’t mix and match different types of quotation marks.

• Format:

print ("the message that you wish to appear")

OR

print ('the message that you wish to appear')

• Example:

print ("foo")

print ('bar')

Slide # 12

James Tam

Variables

• Set aside a location in memory.

• Used to store information (temporary).
–This location can store one ‘piece’ of information.

• Putting another piece of information at an existing location overwrites
previous information.

–At most the information will be accessible as long as the program runs.

• Some of the types of information which can be stored in
variables include: integer (whole), floating point (fractional),
strings (text)

Format:
<name of variable> = <Information to be stored in the variable>

Examples:
–Integer (e.g., num1 = 10)

–Floating point (e.g., num2 = 10.0)

–Strings (e.g., name = "james")

Picture from Computers in your future by Pfaffenberger B

8/31/2012

7

Slide # 13

James Tam

Variable Naming Conventions

• Python requirements:

–Rules built into the Python language for writing a program.

–Somewhat analogous to the grammar of a ‘human’ language.

–If the rules are violated then the typical outcome is the program cannot

be translated (nor run).

• A language such as Python may allow for a partial execution.

• Style requirements:

–Approaches for producing a well written program.

–(The real life analogy is that something written in a human language may

follow the grammar but still be poorly written).

–If they are not followed then the program can still be translated but there

may be other problems (more on this during the term).

???

Slide # 14

James Tam

Variable Naming Conventions (2)

1. Style requirement: The name should be meaningful.

2. Style and Python requirement: Names must start with a
letter (Python requirement) and should not begin with an
underscore (style requirement).

3. Style requirement: Names are case sensitive but avoid
distinguishing variable names only by case.

4. Style requirement: Variable names should generally be all
lower case (see next point for the exception).

5. Style requirement: For variable names composed of
multiple words separate each word by capitalizing the first
letter of each word (save for the first word) or by using an
underscore. (Either approach is acceptable but don’t mix
and match.)

6. Python requirement: Can't be a keyword (see next slide).

8/31/2012

8

Slide # 15

James Tam

Key Words In Python1

and del from not while

as elif global or with

assert else if pass yield

break except import print

class exec in raise

continue finally is return

def for lambda try

1 From “Starting out with Python” by Tony Gaddis

Slide # 16

James Tam

Extra Practice

• Come up example names that violate and conform to the

naming conventions.

–(You will have to go through this process as you write your programs so

it’s a good idea to take about 5 – 10 minutes to make sure that you

understand the requirements).

8/31/2012

9

Slide # 17

James Tam

Named Constants

•They are similar to variables: a memory location that’s been
given a name.

•Unlike variables their contents shouldn’t change.

•The naming conventions for choosing variable names generally
apply to constants but the name of constants should be all
UPPER CASE. (You can separate multiple words with an
underscore).

•Example PI = 3.14

•They are capitalized so the reader of the program can distinguish
them from variables.
–For some programming languages the translator will enforce the

unchanging nature of the constant.

–For languages such as Python it is up to the programmer to recognize a
constant for what it is and not to change it.

Slide # 18

James Tam

Terminology: Named Constants Vs. Literals

• Named constant: given an explicit name.

TAX_RATE = 0.2

afterTax = income – (income * TAX_RATE)

• Literal/unnamed constant/magic number: not given a name, the

value that you see is literally the value that you have.

afterTax = 100000 – (100000 * 0.2)

8/31/2012

10

Slide # 19

James Tam

Terminology: Named Constants Vs. Literals

• Named constant: given an explicit name

TAX_RATE = 0.2

afterTax = income – (income * TAX_RATE)

• Literal/unnamed constant/magic number: not given a name, the

value that you see is literally the value that you have.

afterTax = 100000 – (100000 * 0.2)

Named

constants

Literals

Slide # 20

James Tam

Why Use Named Constants

1. They make your program easier to read and understand
 # NO

 populationChange = (0.1758 – 0.1257) * currentPopulation

Vs.

#YES

BIRTH_RATE = 17.58

MORTALITY_RATE = 0.1257

currentPopulation = 1000000

populationChange = (BIRTH_RATE - MORTALITY_RATE) * currentPopulation

In this case the

literals are Magic

Numbers (avoid

whenever

possible!)1

3.14 300,000

Magic numbers: ‘pulled out of no-where’

2.54

8/31/2012

11

Slide # 21

James Tam

Why Use Named Constants (2)

2) Makes the program easier to maintain

–If the constant is referred to several times throughout the program,

changing the value of the constant once will change it throughout the

program.

–Using named constants is regarded as “good” style when writing a

computer program.

Slide # 22

James Tam

Purpose Of Named Constants (3)

BIRTH_RATE = 0.1758

MORTALITY_RATE = 0.1257

populationChange = 0

currentPopulation = 1000000

populationChange = (BIRTH_RATE - MORTALITY_RATE) * currentPopulation

if (populationChange > 0):

 print "Increase"

 print "Birth rate:", BIRTH_RATE, " Mortality rate:", MORTALITY_RATE, "

Population change:", populationChange

elif (populationChange < 0):

 print "Decrease"

 print "Birth rate:", BIRTH_RATE, " Mortality rate:", MORTALITY_RATE,

"Population change:", populationChange

else:

 print "No change"

 print "Birth rate:", BIRTH_RATE, " Mortality rate:", MORTALITY_RATE,

"Population change:", populationChange

8/31/2012

12

Slide # 23

James Tam

Purpose Of Named Constants (3)

BIRTH_RATE = 0.8

MORTALITY_RATE = 0.1257

populationChange = 0

currentPopulation = 1000000

populationChange = (BIRTH_RATE - MORTALITY_RATE) * currentPopulation

if (populationChange > 0):

 print "Increase"

 print "Birth rate:", BIRTH_RATE, " Mortality rate:", MORTALITY_RATE, "

Population change:", populationChange

elif (populationChange < 0):

 print "Decrease"

 print "Birth rate:", BIRTH_RATE, " Mortality rate:", MORTALITY_RATE,

"Population change:", populationChange

else:

 print "No change"

 print "Birth rate:", BIRTH_RATE, " Mortality rate:", MORTALITY_RATE,

"Population change:", populationChange

One change in the

initialization of the

constant changes every

reference to that

constant

Slide # 24

James Tam

Purpose Of Named Constants (4)

BIRTH_RATE = 0.1758

MORTALITY_RATE = 0.01

populationChange = 0

currentPopulation = 1000000

populationChange = (BIRTH_RATE - MORTALITY_RATE) * currentPopulation

if (populationChange > 0):

 print "Increase"

 print "Birth rate:", BIRTH_RATE, " Mortality rate:", MORTALITY_RATE, "

Population change:", populationChange

elif (populationChange < 0):

 print "Decrease"

 print "Birth rate:", BIRTH_RATE, " Mortality rate:", MORTALITY_RATE,

"Population change:", populationChange

else:

 print "No change"

 print "Birth rate:", BIRTH_RATE, " Mortality rate:", MORTALITY_RATE,

"Population change:", populationChange

One change in the

initialization of the

constant changes every

reference to that

constant

8/31/2012

13

Slide # 25

James Tam

When To Use A Named Constant?

• (Rule of thumb): If you can assign a descriptive useful, self-

explanatory name to a constant then you probably should.

• Example 1 (easy to provide self explanatory name)

INCH_CENTIMETER_RATIO = 2.54

height = height * INCH_CENTIMETER_RATIO

• Example 2 (providing self explanatory name is difficult)

Calories used = (10 x weight) + (6.25 x height) - [(5 x age) - 161]

Slide # 26

James Tam

Extra Practice

• Provide a formula where it would be appropriate to use named

constants (should be easy).

• Provide a formula where unnamed constants may be acceptable

(may be trickier).

• Search online if you can’t think of any.

8/31/2012

14

Slide # 27

James Tam

Output: Displaying The Contents Of Variables And Constants

Format:

print (<variable name>)

print (<constant name>)

Example:

Program name: output1.py

aNum = 10

A_CONSTANT = 10

print (aNum)

print (A_CONSTANT)

Slide # 28

James Tam

Mixed Output

• Mixed output: getting string output and the contents of

variables (or constants) to appear together.

• Format:

print (“string”, <variable or constant>, “string”, <variable or constant> etc.)

• Examples:

Program name: output2.py

myInteger = 10

myReal = 10.5

myString = "hello"

print ("MyInteger:" , myInteger)

print ("MyReal:" , myReal)

print ("MyString:" , myString)

The comma signals to the

translator that the string and

the contents of the variable

should appear on the same line.

8/31/2012

15

Slide # 29

James Tam

Output: Problems

• Sometimes Python automatically adds an additional newline

• Name of example: output3.py

year = 1997

print ("year=")

print (year)

print ("year=", year)

Label and variable

contents on different lines

Label and variable

contents on the same line

Slide # 30

James Tam

Arithmetic Operators

Operator Description Example

= Assignment num = 7

+ Addition num = 2 + 2

- Subtraction num = 6 - 4

* Multiplication num = 5 * 4

/ Division num = 25 / 5

% Modulo num = 8 % 3

** Exponent num = 9 ** 2

8/31/2012

16

Slide # 31

James Tam

• First level of precedence: top to bottom

• Second level of precedence

– If there are multiple operations that are on the same level then

precedence goes from left to right.

Order Of Operation

() Brackets (inner before outer)

** Exponent

*, /, % Multiplication, division, modulo

+, - Addition, subtraction

Slide # 32

James Tam

Order Of Operation And Style

• Even for languages where there are clear rules of precedence

(e.g., Java, Python) it is regarded as good style to explicitly

bracket your operations.

x = (a * b) + (c / d)

• It not only makes it easier to read complex formulas but also a

good habit for languages where precedence is not always clear

(e.g., C++, C).

8/31/2012

17

Slide # 33

James Tam

Input

•The computer program getting string information from the user.

•Strings cannot be used for calculations (information getting
numeric input will provided shortly).

•Format:
<variable name> = input()

 OR

<variable name> = input("<Prompting message>")

•Example:

Program name: input1.py

print ("What is your name: ")

name = input ()

 OR

name = input ("What is your name: ")

Slide # 34

James Tam

Variables: Storing Information

• On the computer all information is stored in binary (2 states)

–Example: RAM/memory stores information in a series of on-off

combinations

on off OR

Byte

•8 bits

Bit

8/31/2012

18

Slide # 35

James Tam

Variables: Storing Information (2)

• Information must be converted into binary to be stored on a

computer.

 User enters Can be stored in the computer as

13

Slide # 36

James Tam

Storing Integer Information

• 1 bit is used to represent the sign, the rest is used to store the

size of the number

–Sign bit: 1/on = negative, 0/off = positive

• Format:

• Previous example

Digits representing the size of the

number

Negative

number

Positive

number

Positive

number

Size of number, in this case = 13

8/31/2012

19

Slide # 37

James Tam

Storing Real Numbers In The Form Of Floating Point

–Mantissa: digits of the number being stored

–Exponent: the direction and the number of places the
decimal point must move (‘float’) when storing the real
number as a floating point value.

• Examples with 5 digits used to represent the mantissa:
–e.g. One: 123.45 is represented as 12345 * 10-2

–e.g. Two: 0.12 is represented as 12000 * 10-5

–e.g. Three: 123456 is represented as 12345 * 101

• Remember: Using floating point numbers may result in a loss
of accuracy (the float is an approximation of the real value to be
stored).

Sign Mantissa Exponent

1 bit Several bits Several bits

Slide # 38

James Tam

• Typically characters are encoded using ASCII

• Each character is mapped to a numeric value

– E.g., ‘A’ = 65, ‘B’ = 66, ‘a’ = 97, ‘2’ = 50

• These numeric values are stored in the computer using binary

Storing Character Information

Character ASCII numeric code Binary code

‘A’ 65 01000001

‘B’ 66 01000010

‘a’ 97 01100001

‘2’ 50 00110010

8/31/2012

20

Slide # 39

James Tam

Storing Information: Bottom Line

• Why it important to know that different types of information is

stored differently?

• Certain operations only apply to certain types of information

and can produce errors or unexpected results when applied to

other types of information.

• Example

num = input("Enter a number")

numHalved = num / 2

Slide # 40

James Tam

Converting Between Different Types Of Information

• Example motivation: you may want numerical information to

be stored as a string (for the formatting capabilities) but also

you want that same information in numerical form (in order to

perform calculations).

• Some of the conversion mechanisms available in Python:

Format:

int (<value to convert>)

float (<value to convert>)

str (<value to convert>)

Examples:

Program name: convert1.py

x = 10.9

y = int (x)

print (x, y)

8/31/2012

21

Slide # 41

James Tam

Converting Between Different Types Of Information (2)

Examples:

Program name: convert2.py

x = '100'

y = '-10.5'

print (x + y)

print (int(x) + float (y))

(Numeric to string: convert3.py)

aNum = 123

aString = str(aNum)

aNum = aNum + aNum

aString = aString + aString

print (aNum)

print (aString)

Slide # 42

James Tam

Converting Between Different Types Of Information: Getting

Numeric Input

• Because the ‘input’ function only returns string information it

must be converted to the appropriate type as needed.

–Example
Program name: convert4.py

Problem!

HUMAN_CAT_AGE_RATIO = 7

age = input("What is your age in years: ")

catAge = age * HUMAN_CAT_AGE_RATIO

print ("Age in cat years: ", catAge)

Problem solved!

HUMAN_CAT_AGE_RATIO = 7

age = int(input("What is your age in years: "))

catAge = age * HUMAN_CAT_AGE_RATIO

print ("Age in cat years: ", catAge)

• ‘Age’ refers to a string not

a number.

• The ‘*’ is not mathematical

multiplication

• ‘Age’ converted to an

integer.

• The ‘*’ now multiplies a

numeric value.

8/31/2012

22

Slide # 43

James Tam

Determining The Type Of Information Stored In A Variable

• It can be done by using the pre-created python function ‘type’

• Example program: type.py

myInteger = 10

myString = "foo!"

print (type(myInteger))

print (type(10.5))

print (type(myString))

Slide # 44

James Tam

Output: Formatting

• Output can be formatted in Python through the use of

placeholders.

• Format:

print ("%<type of info to display/code>" %<source of the info to display>)

• Example:

–Program name: formatting1.py

num = 123

st = "cpsc 231"

print ("num=%d" %num)

print ("course: %s" %st)

num = 12.5

print ("%f %d" %(num, num))

8/31/2012

23

Slide # 45

James Tam

Types Of Information That Can Be Displayed

Descriptor code Type of Information to display

%s String

%d Integer (d = decimal / base 10)

%f Floating point

Slide # 46

James Tam

Some Formatting Effects Using Descriptor Codes

• Format:

%<width>1.<precision>2<type of information>

• Examples:

–Program name: formatting2.py

num = 12.55

print ("%5.1f" %num)

print ("%.1f" %num)

num = 12

st = "num="

print ("%s%d" % (st, num))

print ("%5s%5s%1s" % ("hi", "hihi", "there"))

1 A positive integer will add leading spaces (right align), negatives will add trailing spaces (left align).

Excluding a value will set the field width to a value large enough to display the output

2 For floating point representations only.

8/31/2012

24

Slide # 47

James Tam

From Python Programming (2nd Edition) by

Michael Dawson

Triple Quoted Output

•Used to format text output

•The way in which the text is typed into the program is exactly

the way in which the text will appear onscreen.

•Program name: formatting3.py

Slide # 48

James Tam

Escape Codes

Escape sequence Description

\a Alarm. Causes the program to beep.

\n Newline. Moves the cursor to beginning of the next line.

\t Tab. Moves the cursor forward one tab stop.

\' Single quote. Prints a single quote.

\" Double quote. Prints a double quote.

\\ Backslash. Prints one backslash.

• The back-slash character enclosed within quotes won’t be

displayed but instead indicates that a formatting (escape) code

will follow the slash:

8/31/2012

25

Slide # 49

James Tam

Escape Codes (2)

• Program name: formatting4.py

print ("\a*Beep!*")

print ("hi\nthere")

print ('it\'s')

print ("he\\y \"you\"")

Slide # 50

James Tam

Extra Practice

• Traces:

–Modify the examples (output using descriptor and escape codes) so that

they are still valid Python statements.

• Alternatively you can try finding some simple ones online.

–Hand trace the code (execute on paper) without running the program.

–Then run the program and compare the actual vs. expected result.

• Program writing:

–Write a program the will right-align text into 3 columns of data.

–When the program starts it will prompt the user for the maximum width

of each column

8/31/2012

26

Slide # 51

James Tam

Program Documentation

• Program documentation: Used to provide information about a

computer program to another programmer (writes or modifies

the program).

• This is different from a user manual which is written for people

who will use the program.

• Documentation is written inside the same file as the computer

program (when you see the computer program you can see the

documentation).

• The purpose is to help other programmers understand the

program: what the different parts of the program do, what are

some of it’s limitations etc.

Slide # 52

James Tam

Program Documentation (2)

• It doesn’t contain instructions for the computer to execute.

• It doesn’t get translated into machine language.

• It’s information for the reader of the program:

–What does the program as a while do e.g., tax program.

–What are the specific features of the program e.g., it calculates personal

or small business tax.

–What are it’s limitations e.g., it only follows Canadian tax laws and

cannot be used in the US. In Canada it doesn’t calculate taxes for

organizations with yearly gross earnings over $1 billion.

–What is the version of the program

• If you don’t use numbers for the different versions of your program

then consider using dates (tie versions with program features).

8/31/2012

27

Slide # 53

James Tam

Program Documentation (3)

• Format:

<Documentation>

• Examples:

Tax-It v1.0: This program will electronically calculate your tax return.

This program will only allow you to complete a Canadian tax return.

The number sign ‘#”

flags the translator that

what’s on this line is

documentation.

Slide # 54

James Tam

Program Versioning And Back Ups

• As significant program features have been completed (tested

and the errors removed/debugged) a new version should be

saved in a separate file.

Version: Sept 20, 2012
Program features:
(1) Load game
(2) Show game world

Game.Sept20
Version: Sept 20, 2012
Program features:
(1) Load game
(2) Show game world

Game.py

Make backup file

8/31/2012

28

Slide # 55

James Tam

Program Versioning And Back Ups

• As significant program features have been completed (tested

and the errors removed/debugged) a new version should be

saved in a separate file.

Version: Oct 2, 2012
Program features:
(1) Save game

Version: Sept 20, 2012
Program features:
(1) Load game
(2) Show game world

Game.py

Version: Oct 2, 2012
Program features:
(1) Save game

Version: Sept 20, 2012
Program features:
(1) Load game
(2) Show game world

Game.Oct2

Make new
backup file

Version: Sept 20, 2012
Program features:
(1) Load game
(2) Show game world

Game.Sept20

Slide # 56

James Tam

Backing Up Your Work

• Do this every time that you have completed a significant
milestone in your program.

–What is ‘significant’ will vary between people but make sure you do this.

• Ideally the backup file should be stored in a separate
directory/folder (better yet on a separate device and/or using an
online method such as an email attachment).

• Common student reason for not making copies: “Backing up
files takes time to do!”

• Compare:
–Time to copy a file: ~10 seconds (generous in some cases).

–Time to re-write your program to implement that feature again: 10
minutes (might be overly conservative in some cases).

• Failing to backup your work is not a sufficient reason for
receiving an extension.

8/31/2012

29

Slide # 57

James Tam

Types Of Documentation

• Header documentation

• Inline documentation

Slide # 58

James Tam

Header Documentation

• Provided at the beginning of the program.

• It describes in a high-level fashion the features of the program

as a whole (major features without a great deal of detail).

HEADER DOCUMENTATION

Word Processor features: print, save, spell check, insert images etc.

<program statement>

<program statement>

8/31/2012

30

Slide # 59

James Tam

Inline Documentation

• Provided throughout the program.

• It describes in greater detail the specific features of a part of the

program (function, loop, branch, group of related statements).

 # Documentation: Saving documents

‘save’: save document under the current name

‘save as’ rename the document to a new name

<program statement>

<program statement>

Documentation: Spell checking

The program can spell check documents using the following English variants:

English (British), English (American), English (Canadian)

<program statement>

<program statement>

Slide # 60

James Tam

Prewritten Python Functions

• Python comes with many functions that are a built in part of the

language e.g., ‘print’, ‘input’

• (If a program needs to perform a common task e.g., finding the

absolute value of a number, then you should first check if the

function has already been implemented).

• For a list of all prewritten Python functions.

–http://docs.python.org/library/functions.html

• Note: some assignments may have specific instructions on

which functions you are allowed to use.

–Read the requirements specific to each assignment.

http://docs.python.org/library/functions.html

8/31/2012

31

Slide # 61

James Tam

Types Of Programming Errors

1. Syntax/translation errors

2. Runtime errors

3. Logic errors

Slide # 62

James Tam

1. Syntax/ Translation Errors

• Each language has rules about how statements are to be

structured.

• An English sentence is structured by the grammar of the

English language:

–The cat sleeps the sofa.

• Python statements are structured by the syntax of Python:

5 = num

Grammatically incorrect: missing the preposition to

introduce the prepositional phrase ‘the sofa’

Syntactically incorrect: the left hand side of an assignment

statement cannot be a literal (unnamed) constant.

8/31/2012

32

Slide # 63

James Tam

1. Syntax/ Translation Errors (2)

• The translator checks for these errors when a computer program

is translated to machine language.

Slide # 64

James Tam

1. Some Common Syntax Errors

• Miss-spelling names of keywords

– e.g., ‘primt’ instead of ‘print’

• Forgetting to match closing quotes or brackets to opening

quotes or brackets.

• Using variables before they’ve been named (allocated in

memory).

• Program name: error_syntax.py

 print (num)

 num = 123

 print num

8/31/2012

33

Slide # 65

James Tam

2. Runtime Errors

• Occur as a program is executing (running).

• The syntax of the language has not been violated (each

statement follows the rules/syntax).

• During execution a serious error is encountered that causes the

execution (running) of the program to cease.

• With a language like Python where translation occurs just

before execution (interpreted) the timing of when runtime

errors appear won’t seem different from a syntax error.

• But for languages where translation occurs well before

execution (compiled) the difference will be quite noticeable.

• A common example of a runtime error is a division by zero

error.

Slide # 66

James Tam

2. Runtime Error1: An Example

• Program name: error_runtime.py

num2 = int(input("Type in a number: "))

num3 = int(input("Type in a number: "))

num1 = num2 / num3

print (num1)

1 When ‘num3’ contains zero

8/31/2012

34

Slide # 67

James Tam

3. Logic Errors

• The program has no syntax errors.

• The program runs from beginning to end with no runtime
errors.

• But the logic of the program is incorrect (it doesn’t do what it’s
supposed to and may produce an incorrect result).

• Program name: error_logic.py

print ("This program will calculate the area of a rectangle")

length = int(input("Enter the length: "))

width = int(input("Enter the width: "))

area = length + width

print ("Area: ", area)

Slide # 68

James Tam

Some Additional Examples Of Errors

• All external links (not produced by your instructor):

–http://level1wiki.wikidot.com/syntax-error

–http://www.cs.bu.edu/courses/cs108/guides/debug.html

–http://cscircles.cemc.uwaterloo.ca/1e-errors/

–http://www.greenteapress.com/thinkpython/thinkCSpy/html/app01.html

http://level1wiki.wikidot.com/syntax-error
http://level1wiki.wikidot.com/syntax-error
http://level1wiki.wikidot.com/syntax-error
http://www.cs.bu.edu/courses/cs108/guides/debug.html
http://cscircles.cemc.uwaterloo.ca/1e-errors/
http://cscircles.cemc.uwaterloo.ca/1e-errors/
http://cscircles.cemc.uwaterloo.ca/1e-errors/
http://www.greenteapress.com/thinkpython/thinkCSpy/html/app01.html

8/31/2012

35

Slide # 69

James Tam

Practice Exercise

• •(This one will be an ongoing task).

• •As you write you programs, classify the type of errors that you

• face as: syntax/translation, runtime or logical.

Slide # 70

James Tam

Layout And Formatting

• Similar to written text: all computers programs (except for the

smallest ones) should use white space to group related

instructions and to separate different groups.

These are output statements to prompt the user information

Instruction1

Instruction2

Instruction3

Instruction4

These are instructions to perform calculations on the user input and

display the results

Instruction5

Instruction6

8/31/2012

36

Slide # 71

James Tam

The Squint Test: A Tool For Evaluating Layout

•Squint at the document or screen so that details (such as text)

appear blurred.

•It’s used to determine what stands out or what elements appear

to belong together

–The goal is to determine the overall structure by hiding details

Original webpage
Blurred version

Slide # 72

James Tam

A Webpage That Fails The Squint Test

Original webpage Blurred version

Images from: http://www.usabilitypost.com/

http://www.usabilitypost.com/

8/31/2012

37

Slide # 73

James Tam

A Webpage With Better Squint Test Results

Images from: http://www.usabilitypost.com/

Original

webpage

Blurred version

Slide # 74

James Tam

After This Section You Should Now Know

• How to create, translate and run Python programs.

• Variables:

–What they are used for

–How to access and change the value of a variable

–Conventions for naming variables

–How information is stored differently with different types of variables,

converting between types

• Named constants:

–What are named constants and how they differ from regular variables

–What are the benefits of using a named constant vs. a literal

• What is program documentation and what are some common

things that are included in program documentation

• How are common mathematical operations performed

http://www.usabilitypost.com/

8/31/2012

38

Slide # 75

James Tam

After This Section You Should Now Know (2)

• Output:
–How to display messages that are a constant string or the value stored in

a memory location (variable or constant) onscreen with print

• How to format output through:
–The use of descriptor codes.

–Escape codes

• How triple quotes can be used in the formatting of output

• Input:
–How to get a program to acquire and store information from the user of

the program

• How do the precedence rules/order of operation work in Python

• About the existence of prewritten Python functions and how to
find descriptions of them

Slide # 76

James Tam

After This Section You Should Now Know (3)

• What are the three programming errors, when do they occur

and what is the difference between each one

