

- Mandatory: Chapter 1
- Optional: None

At the end of this section, the student will be able to:

1. Name the 5 basic components of a computer \& identify their functions
2. Explain how processor speed is measured
3. Understand Dual-Core architectures
4. Describe the operation of Hard disks and optical CDs
5. Describe the memory hierarchy
6. Understand how information is represented in a computer by 0 s and 1 s

Objectives

- Computers are general purpose machines
- Music/Movies
- Communication
- More complex operation

Computers

- CPU is the brain of the computer
- Also called processor
- Has two components:
- Arithmetic and Logic Unit (ALU)
- Simple arithmetic and logic operations

Control Unit

- Controls the operations of the rest of the machine
- Has a scratch pad Collection of registers
- Connected to the rest of the system components

CPU

Control
Unit (CU)

Arithmetic and Logic Unit (ALU)

Registers

Central Processing Unit

1	1	1	1	1	1	1	1	1	1
1	0	0	0	1	0	1	0	0	1
1	0	0	0	1	0	1	0	0	1
1	0	0	1	1	0	1	0	0	1
1	0	0	0	1	0	1	0	0	1
1	0	0	0	1	0	0	0	0	1
1	0	0	0	0	0	0	0	0	1
1	$\mathbf{1}$	$\mathbf{1}$	1	1	1	1	1	1	1

Robot's World

- Random Access Memory
- Holds programs and Data for CPU
- Every thing the CPU operates on (executing a program, playing a song, working on a file) must be in RAM
- Volatile: do not hold data if power is lost
- Need non-volatile storage
- Non-volatile Storage
- Electro-magnetic signals that stay in the absence of power

- Printer
- Keyboard
- Screen
- Mouse
- Etc ...

- Fast Memory that sits between main memory and CPU

- What does a 3.0 GHz CPU mean?
- CPU can perform about 3 billion microinstructions per second

- A Computer that contains two CPUs on the same chip

Dual Core?

- Byte = 8 bits
- Kilobyte $=1024$ bytes
- Megabyte $=1024$ Kilobytes 1,048,576 bytes
- Gigabyte = 1024 Megabytes
-1,073,741,824 bytes
- Terabyte $=1024$ Gigabyte

1,099,511,627,776 bytes

Storage Units

At the end of this section, the student will be able to:

1. Understand how characters are represented by 0 s and 1 s
2. Understand the encoding and decoding process
3. Find the minimum number of bits needed to code character information

Objectives

- Symbols in a computer's memory are stored as 0s and 1s
- Each symbol is given a fixed-length code
- ASCII codes:
- A is 01000001
- B is 01000010
\circ C is 01000011
- D is 01000100
- E is 01000101
- Etc.
- The Word ACE is stored in a computer as:

010000010100001101000101
A
C
E

Fixed-Length Codes

Dec $\mathrm{H} \times$ Oct Char

00000 NUL (null)
11001 SOH (start of heading)
3002 ETX (end of text)
4004 EOT (end of transmission)
5005 ENO (enduiry)
6006 ACK (acknowledge)
7007 BEL (bell)
8010 BS (backspace)
9011 TAB (horizontal tab)
A 012 LF (NL line feed, new line
B 013 VT (vertical tab)
D 014 FF (NP form feed, new page)
D 015 CR (carriage return)
F 017 SI (shift out)
1610020 DLE (data link escape)
$1711021 \mathrm{DC1}$ (device control 1
1812022 DC2 (device control 2)
1913023 DC3 (device control 3)
$2014024 \mathrm{DC4}$ (device control 4)
2115025 MAK (negative acknowledge)
2216026 SYN (synchronous idle)
$\begin{array}{lll}23 & 17 & 027 \text { ETB (end of trans. block) }\end{array}$
2418030 CAN (cancel)
2519031 EM (end of medium)
26 1A 032 SUB (substitute)
27 1B 033 ESC (escape)
29 1D 035 Gs (tile separator)
30 IE 036 RS (record separator)
31 IF 037 us (unit separator)

63 3F 077 6 663 ; ?

	7349111 6673:	10569
		106 6A 152410

75 4B 113 6 775 ; K 107 6B 153		

764 C 114 6476; L 1086 C 154 6\$108; 1
77 4D 115 6 677 ; M 109 6D 155 6 1109 ;
 79 4F 117 6479: 0 111 6F 157 6 6111 ; 0 $80 \quad 50 \quad 120$ c580; P $\quad \left\lvert\, \begin{array}{llll}112 & 70 & 160 & 65112 ; ~ D\end{array}\right.$ $\left.\begin{array}{llll}81 & 51 & 121 & 6481 ; \\ 8 & 52 & 122 & 682 ;\end{array} \right\rvert\, 11371161 \quad 65113 ; q$

 | 83 | 53 | 123 | $6883 ;$ | s | 115 |
| :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllll}84 & 54 & 124 & 6884 ; \\ 85 & 55 & 125 & 685 ; & \mathrm{T} \\ 10 & 116 & 74 & 164 & 61116 ; \\ 117 & 75 & 165 & 61117 ;\end{array}$ $\begin{array}{lllll}85 & 55 & 125 & 6885 ; & \mathrm{U} \\ 86 & 56 & 126 & 6886 ; & v \\ 117 & 75 & 165 & 65117 ; ~ u \\ 118 & 76 & 165 & 6 & 6118 ;\end{array}$

88	58	130	$688 ;$	X	120	78	170
89	6	$5120 ;$	X				
89	131	$6889 ;$	Y	121	79	171	6

 91 SC 134 6 $992 ;$; $\begin{array}{llll}92 & \text { SC } & 134 & 699 ; \\ 93 & \text { SD } & 135 & \text { G } 993 ;\end{array} \left\lvert\, \begin{array}{llll}124 & 7 C & 174 & \text { 6F124; } \\ 125 & 7 D & 175 & \text { G } 125 \text {; }\end{array}\right.$ 95 5F 137 4 895 ; _ | 127 7F 177 6 $\$ 127$; DEL

More ASCII Codes

- If the alphabet has two letters only (say 0 and 1), how many one-letter words can be formed?
- Only two possibilities exist
- 0
- 1
- So, two words

A Counting Problem

- Think of it this way:
- We have a box that can fit one ball only
- Balls have one of two colors

- How many distinct boxes can we produce?
- If the alphabet has two letters only (say 0 and 1), how many two-letter words can be formed?

Bigger box Can hold 2 balls

Counting Problem

- If the alphabet has two letters only (say 0 and 1), how many two-letter words can be formed?
- 00
- 01
- 10
- 11
- So, four words
- If the alphabet has two letters only (say 0 and 1), how many three-letter words can be formed?
- 000, 001, 010, 011, 100, 101, 110, 111
- So, eight words

A Counting Problem

- If the alphabet has two letters only (say 0 and 1), how many \boldsymbol{n}-letter words can be formed?
$\cdot 2^{n}$ words
- If the alphabet has β letters, how many n-letter words can be formed?
$\boldsymbol{\beta}^{\mathbf{n}}$ words

Counting Problem

- Assume we have a file that contains data composed of 6 letters (symbols) only:
- A, I, C, D, E, and S (for space)

ACE DICE AIDE CAID EAD DAICED

Back to Coding

- Assume we have a file that contains data composed of 6 letters (symbols) only:
- A, I, C, D, E, and S (for space)

- If the file has 1000 characters, how many bits (0 s and 1 s) are needed to code the file?
- The first question is
- How many symbols do we need to represent each character?
- The objective is to keep the size of the file as small as possible
- We have 6 characters (messages) and two alphabet symbols (0 and 1)
- 2 is not enough, since 2^{2} is 4

Coding

- 00 for A
- 01 for S
- 10 for I
- 11 for E
- We cannot represent the rest C and D
- 3 works, since 2^{3} is 8 , so we can represent up to 8 characters and we only have 6
- Say
- 000 for A
- 001 for S
- 010 for I
- 011 for E
- 100 for C
- 101 for D
- 110 not used
- 111 not used

3 bits are more than enough

- If the file has 1000 characters, how many bits (0 s and 1 s) are needed to code the file?
- Each character needs 3 bits
- Hence, we need $3 \times 1000=3000$ bits

