

- Mandatory: Chapter 2 - Sections 2.3 and 2.4

Reading Assignment

At the end of this section, the you will be able to:

1. Understand the two basic properties of sets
2. Understand the (one) difference between sets and multisets
3. Define a set and use two types of set representations
4. Perform all 4 operations on sets
5. Use Venn diagrams to depict sets and operations on them
6. Define tuples and differentiate them from sets
7. Perform multiplication on sets (Cartesian products)

- A set is a collection of objects;
, we call these objects the elements of the set.
- Examples:

Students in this class form (ie, are elements of) a set

- The set of all positive integers

The set of all of your shirts

- Sometimes we call an element of a set a member of that set, instead.
- Small sets can be represented by listing its members
- A = \{paper, scissors, rock\}
- All possible choices in the game
- $B=$ \{pawn, rook, knight, bishop, queen, king\}
All chess pieces
- $C=\{1,2,3,4,5\}$

All positive integers less than or equal to 5

- May not be possible to list all members
- Some sets are infinite
- $A=\{x \mid x$ is a current student at UofC $\}$

All current students at UofC

- $B=\{x \mid x$ is an even number $\}$ - Infinite set

Representing Big Sets

- An empty set contains no elements.
- Notation:

$$
A=\{ \}
$$

$$
A=\phi
$$

- Duplicates are not allowed (or do not count)
- \{paper, scissors, rock\} is the same as \{paper, scissors, rock, rock\}
- We should not repeat elements
- Order of members is irrelevant
- \{paper, scissors, rock\}
- \{scissors, rock, paper\}
- \{rock, scissors, paper\}
- Are all the same set
- Duplication is allowed
- \{Sara, Sam, Frank, Julie, Sam, Frank\}
- $A \subseteq B$ means that all members of A are also members of B
- Read A is a subset (or equal to) of B
- Examples:
- $\{1,2\} \subseteq\{1,2,7\}$
- $\{a\} \subseteq\{\alpha \mid \alpha$ is a letter in the English alphabet\}
- $\{\mathrm{H}, \mathrm{I}, \mathrm{T}\} \subseteq\{\mathrm{H}, \mathrm{I}, \mathrm{T}\}$
- For member elements, $\mathrm{H} \in\{\mathrm{H}, \mathrm{I}, \mathrm{T}\}$

Set Inclusion (JT: Subset)

- A set is also a subset of itself $\{1,2,3\} \subseteq\{1,2,3\}$
- The empty set is also a subset of any set
- We write $x \in S$ to say that x is an element of the set S
- Examples:
- $2 \in\{1,2,3\}$
$\circ \$ \in\{\$, \notin £, ¥, €, €\}$
$\cdot a \in\{a\}$
- This is not the same as "set inclusion!"

Set Membership

- Set Intersection
- $A \cap B=$ set of all elements that are in A and in B
- Example:
$A=\{1,6,8\}, B=\{1,3,5,7\}, C=\{3,5,7\}$
$A \cap B=? ? ?$
$-B \cap C=? ? ?$
$A \cap C=? ? ?$
- We say sets S and T are disjoint if $\mathrm{S} \cap \mathrm{T}=\{ \}$.

- Set Union

- $A \cup B=$ set of all elements that are in A or in B
- Example:
- $A=\{1,6,8\}, B=\{1,3,5,7\}, C=\{3,5,7\}$
- $A \cup B=? ? ?$
$\cdot B \cup C=? ? ?$
- $A \cup C=? ? ?$

Operations on Sets

$\mathrm{A} \cup \mathrm{B} \cup \mathrm{C}=\mathrm{D}$ (Population of the Prairie provinces)

- Set Subtraction
- $A-B=$ set of all elements that are in A but not in B
- Example:
- $A=\{1,6,8\}, B=\{1,3,5,7\}, C=\{3,5,7\}$
- $\mathrm{A}-\mathrm{B}=$? ??
$\circ \mathrm{B}-\mathrm{C}=$???
$\circ \mathrm{C}-\mathrm{B}=$???
- $\mathrm{C}-\mathrm{A}=$? ??

Francophone countries that are not members of the Commonwealth

Subtraction- Venn Diagram

- Let A be a set
- $\bar{A}=\{x \mid x$ not $\in A\}$
- $A=\{x \mid x$ is male $\}$
- $\bar{A}=\{x \mid x$ is not male $\}$

Complement

- We use curly brackets (braces) to represent sets
\{rock, paper\} = \{paper, rock\}
- If order is important we use ordered tuples - (rock, paper) $=$ (paper, rock)
- Maybe meaning (choice of player 1, choice of player 2)
- General form of a tuple: $\left(v_{1}, v_{2}, v_{3}, \ldots v_{n}\right)$
- In tuples, repetition of elements is allowed:
(1, 2, 1, 3)
- $A \times B=\{(a, b) \mid a$ is in A and b is in $B\}$
- Example: $A=\{a\}, B=\{1,2\}$
- $A \times B=\{(a, 1),(a, 2)\}$
- JT's extra:
"Takes all combinations from the sets"
The operation may be used in decision making to ensure that all combinations have been covered.
- In general $A_{1} \times A_{2} \times \ldots \times A_{n}=\left\{\left(a_{1}, a_{2}, \ldots\right.\right.$, $\left.a_{n}\right) \mid a_{1}$ is in A_{1} and a_{2} is in $A_{2} \ldots a_{n}$ is in $\left.A_{n}\right\}$

Set Multiplication

- Developing a game where all combinations must be considered in order to determine the outcome.
- Each combination is a tuple (not a set).

A = \{player one, player two $\}$
$B=\{$ rock, paper, scissors $\}$
$A \times B=\{($ player one, rock), (player one, paper), (player one, scissors), (player two, rock), (player two, paper), (player two, scissors)\}

- (Examples from actual software will be much more complex and taking a systematic approach helps ensure that nothing is missed).
A = \{player one, player two, player three...\}
$B=\{$ completed quest one, completed quest two...\}
C = \{healthy, injured, poisoned, diseased, dead, gone forever\}

