

- Mandatory: Chapter 3 - Sections 3.1 \& 3.2

Reading Assignment

Graphs
 Abstraction of Data

At the end of this section, you will be able to:

1. Define directed and undirected graphs
2. Use graphs to model data
3. Use graph terminology
4. Represent graphs using adjacency matrices

- To show relationships (people, objects, locations etc.)

JT's Extra: What Is A Graph Used For?

- Visualizing connections e.g., "6 degrees of separation"

- They can be used anytime that the relationships between some entities must be visualized.
- Examples:
- A few from will be used in the following slides:
- http://www.graph-magics.com/practic use.php

JT's Extra: Practical Applications (Graphs)

- Logistics:

Making sure that you deliver your items to every street within a part of the city. You want to cover every street but at the same time minimize travel time.
Telecommuincations: Find the cheapest way to connect communication stations (TV, telephone, computer network) so that a station is connected to any other (directly, or through intermediate stations).

- (More logistics)

A warehouse should be placed in a city (a region) so that the sum of shortest distances to all other points (regions) is minimal. This is useful for lowering the cost of transporting goods from a warehouse to clients.

- Solving everyday problems by abstracting details:
In this case the problem is represented by (abstracted into) a graph.
Other types of problems can be abstracted into other structures such as trees (later section).
- Removing extraneous details through abstraction may make the problem easier to solve (or even make the seemingly impossible possible).

JT's Extra: Why Learn Graph Theory?

- To graphically show the relations in a set
- Example graph:
- $S=\{A, B, C\}$
- A graph can show the relationships between elements

(C)

JT's Extra: How Will Graphs Be Used In This Section

- A graph G is defined as:

$$
G=(V, E)
$$

where
$V(G)$ is a set of vertices
$E(G)$ is a set of edges (pairs of vertices)
JT's note: Vertices are the 'things' being connected, edges are the connectors.

- Directed Graph: edges are one-way
- Undirected Graph: edges are two-way
- Labeled Graphs: edges have weights

- Edges are two-way
- Alberta towns, cities and the highways that connect them.

V = \{Edmonton, Red Deer, Calgary, Canmore, Banff $\}$
$\mathrm{E}=\{\{\mathrm{Banff}$, Canmore $\}$,
\{Calgary, Canmore\},
\{Calgary, Red Deer\},
\{Edmonton, Red Deer\}\}
$V=\{A, B, C, D, E, F\}$
$E=\{$
(A, B),
(B, A),
(B,C),
(A,D),
(C,A),
(D, E),
(C,F),
(E,A),
(E,E),
(F,E) \}.

- Organizational structure ("reports to")

- Adjacent vertices: connected by an edge
- A and B are adjacent
- D and C are not
- There is a Path from A to C
- One path: A to B to C
- Cycle $=$ a path starting and ending with the same vertex

B
C

Graph Terminology

- There is a path between vertices if they are: 1) directly connected by an edge or 2) indirectly connected.

Red Deer and Lethbridge are not adjacent but there is at least one path from Red Deer to Lethbridge.

Peeking into Computer Science

- Degree of a vertex =

Number of edges touching it degree of $C=2$
degree of $A=3$

Graph Terminology

- A is adjacent to B
- B is adjacent from A
- There is a Path from A to C
- There is no path that starts at D
- In-degree of A is 1
- Out-degree of A is 2

- The World Wide Web itself can be visualized as a directed graph.
Vertex = web page, Edge = link between pages.

The WWW Is A Graph

- Visualizing the layout of a page as a graph can be useful in web design.
Are there sufficient connections between pages?
Do the connections (links) make sense to visitor?
Although it should be possible to reach any page without too much clicking (rule of thumb is 3), there are some pages that should always be accessible e.g., home page, contact page etc.

JT's Extra: Applying Graphs To Web Design

	A	B	C	D	E
A	0	1	0	0	0
B	1	0	1	1	0
C	0	1	0	0	1
D	0	1	0	0	1
E	0	0	1	1	0

Graph Representation

- Graphs Up To This Point:

Do not allow for multiple edges between any pair of vertices.

- Multi-graphs are a type of graph that allows for these cases.
- In a multi-graph the set of edges is a multi-set (JT: recall a multi-set is a set that allows for duplications)
- Edges can be repeated
- Graphs are special cases of multi-graphs

Multiographs
Parallel edges

- Example: path finding when alternatives are possible.

At the end of this section, you will be able to:

1. Understand how graphs are used to represent data
2. Appreciate the ability of graphs to lead to generalized conclusions
3. Define Euler tours and paths
4. Identify under which conditions an Euler circuit or path exists in a graph
5. Understand why such conditions are required
6. Learn the Euler circuit algorithm

- Today called Kaliningrad in the Russian Republic
- In 1736 was in Prussia
- The town had seven bridges on the Pregel River

- People in 1736 wondered if it is possible to take the following walk in town:
- Start at some location in town
- Travel across all bridges without crossing any bridge twice
- End the walk where it started
- They wrote to Swiss Mathematician Leonhard Euler for help
- 1707-1783
- The greatest mathematician of the 18th century and one of the greatest of all time
- a pioneering Swiss mathematician and physicist
- important discoveries in graph theory
- introduced much of the modern mathematical terminology and notation

Konigsberg multigraph

- Is there a path through this graph that
- Starts at a vertex
- Ends in the same vertex
- Passes through every edge once
- Does not cross an edge more than once?
- Called an Euler Circuit
- Such a walk is impossible on any graph as long as the graph has one vertex with an odd degree
- There is at least one vertex of an odd degree
- Does not work (the start vertex must have an even degree)

Euler's Response

- To cross every bridge once

- Each vertex must have an even degree

Even-Degree Vertex (JT: Not Start/End)

- Must leave using some bridge
- Either we come back to leave again (need two new bridges)
- Or we come back to stay (using another

- Cannot be of an odd degree: we need another bridge to come back

The Starting/Ending Vertex

- Is there a path through this graph that
- Starts at some vertex
- Ends at a (possibly different) vertex
- Passes through every edge once
- Does not cross an edge more than once?
- Called a Euler Path
- Note that if there is a circuit, then there is a path
- If not, then the path is necessarily not a circuit

An Easier Problem

- The starting vertex must have an odd degree

Never come back to stay

- The end vertex must have an odd degree

- All other vertices must have an even degree

- Every in must have a matching out on "new" bridges
- Start and end vertices must have odd degrees
- Every other vertex must have an even degree
- There is no Euler Path for the Konigsberg graph

Euler (non-cycle) Path Requirements

- Can you draw this shape with the rules:
- Draw continuously, cannot lift pen from one position to another
- Draw each line once, cannot let pen run on top of an already drawn line

A Similar Problem

- Is there a Euler Circuit No (some vertices have odd degrees)
- Is there a Euler Path
- Yes (exactly two vertices have odd degrees)
- Path must start at an odd-degree vertex and ends at another odd-degree ond

Graph Representation

Given a graph G (all vertices have even degrees):

1. Construct a circuit c, starting and ending at arbitrary vertex in G
2.Remove all the edges of c from G
3.Repeat until G has no edges:
a) Construct a circuit c^{\prime} in G that starts (ends) in a vertex v that is in c
b) Add c^{\prime} to c at v
c) Remove all the edges of c^{\prime} from G

a) Construct a circuit c^{\prime} in G that starts (ends) in a vertex v that is in c

Repeat a), b), and c)

c': D, F, E, D

An Euler circuit
C: A, J, I, A, B, D, F, E, D, C, A

C: A, J, I, A, B, D, C, A
C: A, J, I, A, B, D, C, A

The graph has no more edges, stop

An Euler circuit
c: A, J, I, A, B, D, F, E, D, C, A

