

- Mandatory: Chapter 3 - Sections 3.3 \& 3.4

Reading Assignment

At the end of this section, you will be able to:

1. Understand (once more) how graphs are used to represent data
2. Learn the graph coloring algorithm
3. Apply graph coloring to solve for various scheduling problems

- Recall:

When color is used to draw attention or otherwise used to communicate information the number of colors used should be minimized.

JTs Extra: A Subset Of Canada: Color The Map Using As Few Colors As Possible And No Adjacent Colors

- Design a traffic light for a complex intersection
- Identify allowed turns
- Going straight is a turn!
- Group turns so that permitted simultaneous turns are in the same group
- Find the smallest number of groups

This means a traffic light with the smallest number of phases

Another Example Problem

- From A to B (denoted AB)
- From A to C (AC)
- From A to D (AD)
- BA
- BC
- BD
- DA
- DB
- DC

- AC
- AD
- BA

- AC conflicts with
- DB
-BD
- BC
- DC

Example Conflicting Turns

- Build a graph model
- Vertices are turns
- An edge connects conflicting turns

- Color the vertices of the graph
- No two adjacent vertices can have the same color
- Adjacent: and edge connects them
- Each color represents a group of turns that can be simultaneous
- Note: more than one solution

Eraph Coloring

- Repeat the following two steps until the graph is colored

1. Select an uncolored vertex and color it with a new color, C
2. For each uncolored vertex, Determine if it has an edge with a vertex that is colored with color C

- If not, color it with color \mathbf{C}
- If yes, skip it

Graph Coloring Algorithm

- You are to schedule final exams so that a student will not have two final exams scheduled at the same time.
- Although you could schedule each exam in it's own individual time slot (i.e., no two exams run simultaneously) this would be highly inefficient. Another constraint is to schedule exams with the minimum number of time slots.
- Examinations for a lecture will be represented with vertices.
- A pair of vertices will be connected if there is at least one student who is registered in both.

Example 1: Final Exams

- Lecture A:

Student 1, student 2

- Lecture B:

Student 2, student 4, student 6

- Lecture C:

Student 1, student 3, student 5

- Lecture D:
- Student 4, student 5

- Lecture A:

Student 1, student 2, student 4

- Lecture B:

Student 2, student 4, student 6

- Lecture C:

Student 1, student 3, student 5

- Lecture D:

Student 4, student 5

From Aho, Hopcroft, and Ullman, Data Structures and Algorithms, Addison-Wesley

Complex Intersection

- Scheduling
- Mobile radio frequency assignment
- Sudoku

JT's Extra: Graph Coloring
 Applications

At the end of this section, the student will be able to:

1. Identify when a graph is a tree
2. Use tree terminology
3. Identify different applications of trees
4. Define binary trees

- Trees are a special case of graphs
- A tree is a (directed) graph with the properties:

1. There is a designated vertex, called the root of the tree
2. There is a unique directed path from the root to every other vertex in the tree

- Grow downwards!

- A tree always "grows" downward
- We omit the arrows

- Root
- Child
- Parent
- Ancestor
- Descendant
- Distance
- Siblings
- Leaf

- A is the parent of B, C, D.
-B, C, D are the children of A.
- B,C,D,E are descendants of A.
- A is ancestor of

B, C, D, E

Parent-Child (Above/Below),

- All vertices have exactly one parent except for the root (which has none).
- JT: (by definition - the root is at the 'top' and because there are no vertices that aren't part of the tree).

Parent-Child

- Siblings have the same parent.
- B,C,D are siblings
- E, F are siblings
- A, G have no siblings
- Leaves are vertices with no children
- B, D, E are leaves
- "Bottom level"

- The distance from the root to a vertex is the number of intervening edges

Distances

- A to $B=1$
- A to $E=2$

- A binary tree is a tree with the following properties:

1. The edges are labeled with the labels left or right
2. Every vertex has at most two children; if both children exist, then one edge must be labeled with left and the other right.

- Drop the labels, if the tree is drawn with

