
11/4/2013

Composites 1

Composite Types

You will learn how to create new
variables that are collections of other
entities

Types Of Variables

Python

variables

1. Simple

 (atomic)

integer boolean float

2. Aggregate

 (composite)

Strings Lists Tuples

Example Simple type

A variable containing the

number 707 can’t be

meaningfully

decomposed into parts

Example composite
A string (collection of
characters) can be
decomposed into
individual words.

11/4/2013

Composites 2

Small Example Programs Using Strings

• Basic string operations/concepts (some may have already been
covered)
– String1.py (strings as sets test for inclusion using ‘in’)

– String2.py (iterating strings using the ‘in’ operator)

– String3.py (Concatenation, repetition)

– String4.py: (passing a whole string to a function)

– String5.py (indexing the parts of a string)

– String6.py (demonstrating the immutability of strings)

– String7.py (converting to/from a string)

James Tam

Small Example Programs Using Strings (2)

• New/more advanced string examples

– String8.py (string slicing)

– String9.py (string splitting)

– String10.py (determining the size of strings)

– String11.py (testing if strings meet certain conditions)

– String12.py (ASCII values of characters)

• All the examples will be located in UNIX under:
/home/courses/217/examples/composites

• Also they can be found by looking at the course website under
the URL:
– http://pages.cpsc.ucalgary.ca/~tamj/217/examples/composites

http://pages.cpsc.ucalgary.ca/~tamj/217/examples/composites

11/4/2013

Composites 3

James Tam

Basic String Operations / Functions

• Some of these may have already been covered earlier during
the semester

Strings Can Be Conceptualized As Sets

• The ‘in’ and ‘not in’ operations can be performed on a
string.

• Branching (example name: “string1.py”)
userNames = "aaa abc username xxx"

userName = input ("User name: ")

if userName in userNames:

 print("User name already taken, enter a new one")

• Looping (iterating through the elements: example name
“string2.py”1)
sentence = "by ur command"

for temp in sentence:

 print("%s-" %temp, end="")

1 Use of the write function requires the ‘import’ of the library sys: allows for more precise

formatting than the standard print

11/4/2013

Composites 4

James Tam

String Operations: Concatenation & Repetition

• Concatenation (‘+’): connects two or more strings

• Repetition (‘*’): repeat a series of characters

• Complete online example: string3.py
s1 = "11"

s2 = "17"

s3 = s1 + s2

s4 = s2 * 3

print(s3)

print(s4)

String: Composite

• Strings are just a series of characters (e.g., alpha, numeric,
punctuation etc.)
– A string can be treated as one entity.

– Online example: “string4.py”

def fun(aString):

 print(aString)

START

aString = "By your command"

fun(aString)

• Individual elements (characters) can be accessed via an index.
– Online example: “string5.py”

– Note: A string with ‘n’ elements has an index from 0 to (n-1)
aString = "hello"

print (aString[1])

print (aString[4])

11/4/2013

Composites 5

James Tam

Mutable, Constant, Immutable,

• Mutable types:
– The original memory location can change

• Constants
– Memory location shouldn’t change (Python): may produce a logic error

if modified

– Memory location syntactically cannot change (C++, Java): produces a
syntax error (violates the syntax or rule that constants cannot change)

• Immutable types:
– The original memory location won’t change

– Changes to a variable of a pre-existing immutable type creates a new
location in memory. There are now two locations.

num 12 17

num = 12
num = 17

immutable immutable = 12
immutable = 17

12

17

Strings Are Immutable

• Even though it may look a string can change they actually
cannot be edited (original memory location cannot change).
– Online example: “string6.py”

s1 = "hi"

print (s1)

s1 = "bye" # New string created

print (s1)

s1[0] = "G" # Error

11/4/2013

Composites 6

James Tam

Converting To Strings

• Online example: string7.py
a = 2

b = 2.5

c = a + b # Addition

print(c) # Yields 4.5

str() Converts argument to a String

Convert to string and then concatenate

c = str(a) + str(b)

print(c) # Yields ‘22.5’

James Tam

Converting From Strings

x = '3'

y = '4.5'

int(): convert to integer

float(): convert to floating point

Convert to numeric and then add

z = int(x) + float(y)

print(z) # Yields 7.5

11/4/2013

Composites 7

James Tam

Advanced Operations / Functions

• These operations and functions likely have not yet been
covered

Substring Operations

• Sometimes you may wish to extract out a portion of a string.
– E.g., Extract first name “James” from a full name “James T. Kirk, Captain”

• This operation is referred to as a ‘substring’ operation in many
programming languages.

• There are two implementations of the substring operation in
Python:
– String slicing

– String splitting

11/4/2013

Composites 8

String Slicing

• Slicing a string will return a portion of a string based on the
indices provided

• The index can indicate the start and end point of the substring.

• Format:
string_name [start_index : end_index]

• Online example: string8.py
aString = "abcdefghij"

print (aString)

temp = aString [2:5]

print (temp)

temp = aString [:5]

print (temp)

temp = aString [7:]

print (temp)

James Tam

Example Use: String Slicing

• Where characters at fixed positions must be extracted.

• Example: area code portion of a telephone number
“403-210-9455”

– The “403” area code could then be passed to a data base
lookup to determine the province.

11/4/2013

Composites 9

String Splitting

• Divide a string into portions with a particular character
determining where the split occurs.

• Practical usage
– The string “The cat in the hat” could be split into individual words (split

occurs when spaces are encountered).
– “The” “cat” “in” “the” “hat”
– Each word could then be individually passed to a spell checker.

James Tam

String Splitting (2)

• Format:
string_name.split ('<character used in the split')

• Online example: string9.py

aString = "man who smiles“

Default split character is a space

one, two, three = aString.split()

print(one)

print(two)

print(three)

aString = "James,Tam"

first, last = aString.split(',')

nic = first + " \"The Bullet\" " + last

print(nic)

11/4/2013

Composites 10

James Tam

Determining Size

• The ‘len()’ function can count the number of characters in a
string.

• Example program: string10.py
MAX_FILE_LENGTH = 256

SUFFIX_LENGTH = 3

filename = input("Enter new file name (max 256 characters): ")

if (len(filename) > MAX_FILE_LENGTH):

 print("File name exceeded the max size of %d characters, you bad"

 %(MAX_FILE_LENGTH))

else:

 # Find file type, last three characters in string e.g., resume.txt

 endSuffix = len(filename)

 startSuffix = endSuffix - SUFFIX_LENGTH

 suffix = filename[startSuffix:endSuffix]

 if (suffix == "txt"):

 print("Text file")

 print("%d:%d %s" %(startSuffix,endSuffix,suffix))

String Testing Functions1

• These functions test a string to see if a given condition has
been met and return either “True” or “False” (Boolean).

• Format:
string_name.function_name ()

1 These functions will return false if the string is empty (less than one character).

11/4/2013

Composites 11

String Testing Functions (2)

Boolean
Function

Description

isalpha() Only true if the string consists only of alphabetic
characters.

isdigit() Only returns true if the string consists only of digits.

isalnum() Only returns true if the string is composed only of
alphabetic characters or numeric digits (alphanumeric)

islower() Only returns true if the alphabetic characters in the string
are all lower case.

isspace() Only returns true if string consists only of whitespace
characters (“ “, “\n”, “\t”)

isupper() Only returns true if the alphabetic characters in the string
are all upper case.

Applying A String Testing Function

Name of the online example: “string11.py”
ok = False

while (ok == False):

 temp = input ("Enter an integer: ")

 ok = temp.isdigit()

 if (ok == False):

 print(temp, "is not an integer")

num = int (temp)

num = num + num

print(num)

Heuristic (end of
“loops”) applied also
(good error message)

11/4/2013

Composites 12

ASCII Values

• Each character is assigned an ASCII code e.g., ‘A’ = 65, ‘b’ = 98

• The chr() function can be used to determine the character (string of
length one) for a particular ASCII code.

• The ord() function can be used to determine the ASCII code for a
character (string of length one).

• Example: string12.py
aChar = input("Enter a character whose ASCII value that you wish to

see: ")

print("ASCII value of %s is %d" %(aChar,ord(aChar)))

aCode = int(input("Enter an ASCII code to convert to a character: "))

print("The character for ASCII code %d is %s" %(aCode,chr(aCode)))

List

• In many programming languages a list is implemented as an
array.
– This will likely be the term to look for if you are looking for a list-

equivalent when learning a new language.

• Python lists have many of the characteristics of the arrays in
other programming languages but they also have other
features.

11/4/2013

Composites 13

Example Problem

• Write a program that will track the percentage grades for a
class of students. The program should allow the user to enter
the grade for each student. Then it will display the grades for
the whole class along with the average.

Why Bother With A List?

• Name of the example program: classList1.py

CLASS_SIZE = 5

stu1 = float(input("Enter grade for student no. 1: "))

stu2 = float(input("Enter grade for student no. 2: "))

stu3 = float(input("Enter grade for student no. 3: "))

stu4 = float(input("Enter grade for student no. 4: "))

stu5 = float(input("Enter grade for student no. 5: "))

11/4/2013

Composites 14

Why Bother With A List? (2)

total = stu1 + stu2 + stu3 + stu4 + stu5
average = total / CLASS_SIZE

print()
print("GRADES")
print("The average grade is %.2f%%", %average)
print("Student no. 1: %.2f", %stu1)
print("Student no. 2: %.2f", %stu2)
print("Student no. 3: %.2f", %stu3)
print("Student no. 4: %.2f", %stu4)
print("Student no. 5: %.2f", %stu5)

Why Bother With A List? (3)

total = stu1 + stu2 + stu3 + stu4 + stu5
average = total / CLASS_SIZE

print()
print("GRADES")
print("The average grade is %.2f%%", %average)
print("Student no. 1: %.2f", %stu1)
print("Student no. 2: %.2f", %stu2)
print("Student no. 3: %.2f", %stu3)
print("Student no. 4: %.2f", %stu4)
print("Student no. 5: %.2f", %stu5)

NO!

11/4/2013

Composites 15

What Were The Problems With
The Previous Approach?

• Redundant statements.

• Yet a loop could not be easily employed given the types of
variables that you have seen so far.

What’s Needed

• A composite variable that is a collection of another type.
–The composite variable can be manipulated and passed throughout the

program as a single entity.

–At the same time each element can be accessed individually.

• What’s needed…a list!

11/4/2013

Composites 16

Creating A List (Fixed Size)

•Format (‘n’ element list):

 <list_name> = [<value 1>, <value 2>, ... <value n>]

Example:

 # List with 5 elements

 percentages = [50.0, 100.0, 78.5, 99.9, 65.1]

Other Examples:

 letters = ['A', 'B', 'A']

 names = ["The Borg", "Klingon ", "Hirogin", "Jem’hadar"]

Element 0 Element 1 Element n-1

0 1 2 3 4

James Tam

Accessing A List

• Because a list is composite you can access the entire list or
individual elements.

percentages = [50.0, 100.0, 78.5, 99.9, 65.1]

• Name of the list accesses the whole list
print(percentages)

• Name of the list and an index “[index]”accesses an element
print(percentages[1])

List

Elements

11/4/2013

Composites 17

James Tam

Negative Indices

• Although Python allows for negative indices (-1 last element, -2
second last…-<size>) this is unusual and this approach is not
allowed in other languages.

• So unless otherwise told your index should be a positive
integer ranging from <zero> to <list size – 1>

Creating A List (Variable Size)

• Step 1: Create a variable that refers to the list (more references
later).

• Format:
 <list name> = []

• Example:
 classGrades = []

11/4/2013

Composites 18

Creating A List (Variable Size: 2)

• Step 2: Initialize the list with the elements

• General format:
– Within the body of a loop create each element and then add the new

element on the end of the list (‘append’)

James Tam

Creating A Variable Sized List: Example

classGrades = []

for i in range (0, 4, 1):

 # Each time through the loop: create new element = -1

 # Add new element to the end of the list

 classGrades.append(-1)

classGrades

Before loop
(empty list)

classGrades

i = 0

[0] -1

classGrades

i = 1

[0] -1
[1] -1

classGrades

i = 3

[0]

[1]

[2]

-1

-1

-1
[3] -1

classGrades

i = 2

[0]

[1]

[2]

-1

-1

-1

11/4/2013

Composites 19

Revised Version Using A List

•Name of the example program: classList2.py
CLASS_SIZE = 5

def initialize():

 classGrades = []

 for i in range (0, CLASS_SIZE, 1):

 classGrades.append(-1)

 return(classGrades)

Revised Version Using A List (2)
def read(classGrades):

 total = 0

 average = 0

 for i in range (0, CLASS_SIZE, 1):

 temp = i + 1

 print("Enter grade for student no.", temp, ":")

 classGrades[i] = float(input (">"))

 total = total + classGrades[i]

 average = total / CLASS_SIZE

 return(classGrades, average)

classGrades

[0]

[1]

[2]

-1

-1

-1

[3] -1
[4] -1

After ‘initialize’: before loop

i = 0

temp 1

average

0 total

0

Current grade
i = 1

100 100

100

2

80

80 180
i = 2

3

50

230

i = 3

4

70

50

70

300

i = 4

5

100

100

400

Loop ends now (Recall:
CLASS_SIZE = 5) 80

11/4/2013

Composites 20

James Tam

Revised Version Using A List (3)

def display(classGrades, average):

 print()

 print("GRADES")

 print("The average grade is %.2f%%" %average)

 for i in range (0, CLASS_SIZE, 1):

 temp = i + 1

 print("Student No. %d: %.2f%%"

 %(temp,classGrades[i]))

James Tam

Revised Version Using A List (4)

def start():

 classGrades = initialize()

 classGrades, average = read(classGrades)

 display(classGrades,average)

start()

11/4/2013

Composites 21

One Part Of The Previous Example Was Actually
Unneeded

def read(classGrades):

 : :

 return (classGrades, average)

When list is passed

as a parameter

Returning the list is likely not

needed

More details on ‘why’ coming up shortly!

Take Care Not To Exceed The Bounds Of The List

[0]

[1]

[2]

[3]

list OK

OK

OK

OK

???

Example: listBounds.py
num1 = 7

list = [0, 1, 2, 3]

num2 = 13

for i in range (0, 4, 1):

 print (list [i])

print ()

print (list [4])

???

RAM

num1 7

num2 13

11/4/2013

Composites 22

One Way Of Avoiding An Overflow Of The List

• Use a constant in conjunction with the list.
 SIZE = 100

• The value in the constant controls traversals of the list
 for i in range (0, SIZE, 1):

 myList [i] = int(input ("Enter a value:"))

 for i in range (0, SIZE, 1):

 print (myList [i])

One Way Of Avoiding An Overflow Of The List

• Use a constant in conjunction with the list.
 SIZE = 100000

• The value in the constant controls traversals of the list
 for i in range (0, SIZE, 1):

 myList [i] = int(input ("Enter a value:"))

 for i in range (0, SIZE, 1):

 print (myList [i])

11/4/2013

Composites 23

James Tam

Lists: Searching/Modifying, Len() Function

• Common problem: searching for matches that meet a certain
criteria.

• The matches may simply be viewed or they may modified with
a new value.

• Example: listFindModify.py
grades = ['A','B','C','A','B','C','A']

last = len(grades) - 1

i = 0

while (i <= last):

 if (grades[i] == 'A'): # Search for matches

 grades[i] = 'A+' # Modify element

 i = i + 1

print(grades)

James Tam

Recap: Variables

• Variables are a ‘slot’ in memory that contains ‘one piece’ of
information.
num = 123

• Normally a location is accessed via the name of the variable.
– Note however that each location is also numbered!

Picture from Computers in your

future by Pfaffenberger B

11/4/2013

Composites 24

James Tam

Recap: Assignment (Simple Types)

num1 = 2

num2 = 3

num1 = num2

Copy contents from
memory location called
‘num2’ into location called
‘num1’

James Tam

List Variables Are References To Lists (Not Actual Lists)

• Most of the time the difference between a reference to a list
and the actual list is not noticeable.

• However there will be times that it’s important to make that
distinction e.g., using the assignment operator, passing
parameters.

• Small example:

aList* No address

RAM Address

100,000
100,001
…

200,000

aList = []
aList = [1,2,3]

Note
• A reference to a list actually

contains an address.
• An ‘empty list’ contains no

address yet
• A non-empty list contains the

address of the list

[0]

[1]

[2]

-1

-1

-1

[3] -1
[4] -1

100

80

50

70
100

200,000

Create list

Put address in
reference

11/4/2013

Composites 25

James Tam

Example: List References

list1 = [1,2,3]

list2 = list1

Looks like two lists, actually just two references to one list

 print(list1,list2)
list1 = [3,2,1]
List1 refers to a new list
print(list1,list2)

Copying Lists

• If you use the assignment operator to copy from list to another
you will end up with only one list).

• Name of the example program: copyList1.py

list1 = [1,2]

list2 = [2,1]

print (list1, list2)

Two ref to one list

list1 = list2

print (list1, list2)

list1[0] = 99

print (list1, list2)

11/4/2013

Composites 26

Copying Lists (2)

• To copy the elements of one list to another a loop is needed to
copy each element.

• Name of the example program: copyList2.py

list1 = [1,2,3]

list2 = []

for i in range (0, 4, 1):

 list2.append(list1[i])

print(list1, list2)

list1[1] = 99

print(list1, list2)

James Tam

Recap: Parameter Passing (Simple Types)

def fun(num):

 print(num)

 num = num + num

 print(num)

def start():

 num = 1

 print(num)

 fun(num)

 print(num)

start()

11/4/2013

Composites 27

James Tam

Passing Lists As Parameters

• When a list variable is passed into function it’s not actually the
whole list that is passed.

 def start():

 aList = [1,2,3]

 fun(aList)

• Instead it’s just a reference to a list (address) that is passed into
the function (which then stores the address in a local variable)
def fun(aList):

Address of list passed
(memory efficient if list is
large and function is
called many times)

The address is stored in a
local variable

James Tam

Passing Lists As Parameters

def fun(aList):

 aList[2] = 7

def start():

 aList = []

 aList = [1,2,3]

 fun(aList)

Fun

Start

Addresses

100,000
100,001
100,002
…

200,000

200,001
200,002
200,003
200,004
200,005
200,006

RAM

aList

[0]

[1]

[2]

1

2

3

200,001

aList 200,001

7

11/4/2013

Composites 28

James Tam

Example: Passing Lists As Parameters

• Name of complete example: listParameters.py
def fun1(aListCopy):

 aListCopy[0] = aListCopy[0] * 2

 aListCopy[1] = aListCopy[1] * 2

 return aListCopy

def fun2(aListCopy):

 aListCopy[0] = aListCopy[0] * 2

 aListCopy[1] = aListCopy[1] * 2

James Tam

Example: Passing Lists As Parameters (2)

def start():

 aList = [2,4]

 print("Original list in start() before function

 calls:\t", end="")

 print(aList)

 aList = fun1(aList)

 print("Original list in start() after calling fun1():\t",

 end="")

 print(aList)

 fun2(aList)

 print("Original list in start() after calling fun2():\t",

 end="")

 print(aList)

start()

11/4/2013

Composites 29

James Tam

Why Are References Used?

• It looks complex

• Most important reason why it’s done: efficiency
– Since a reference to a list contains the address of the list it allows access

to the list.

– As mentioned if the list is large and a function is called many times the
allocation (creation) and de-allocation (destruction/freeing up memory
for the list) can reduce program efficiency.

• Size of references ~range 32 bits (4 bytes) to 64 bits (8 bytes)

• Contrast this with the size of a list
– E.g., a list that refers to online user accounts (each account is a list

element that may be multi-Giga bytes in size). Contrast passing an 8
byte reference to the list vs. passing a multi-Gigabyte list.

James Tam

Simulation, What If A List And Not A List Reference Passed:
Creating A New List Each Function Call

• Name of full online example: listExampleSlow.py
MAX = 1000000

def fun(i):

 print("Number of times function has been called %d" %(i))

 aList = []

 for j in range (0,MAX,1):

 aList.append(str(j))

def start():

 for i in range (0,MAX,1):

 fun(i)

start()

11/4/2013

Composites 30

James Tam

Formatting Output: Newline

• # Method 1: Review (any variable type, displays all on one line)
print(“hello”, end = “””)

• # Method 2: New (a string variable only – displays all on one
line)
import sys

sys.stdout.write(“hello”)

When To Use Lists Of Different Dimensions
• Determined by the data – the number of categories of information

determines the number of dimensions to use.

• Examples:

• (1D list)
–Tracking grades for a class (previous example)

–Each cell contains the grade for a student i.e., grades[i]

–There is one dimension that specifies which student’s grades are being
accessed

• (2D list)
–Expanded grades program

–Again there is one dimension that specifies which student’s grades are being
accessed

–The other dimension can be used to specify the lecture section

One dimension (which student)

11/4/2013

Composites 31

When To Use Lists Of Different Dimensions (2)

• (2D list continued)

Student

Lecture

section
 First

 student

 Second

 student

 Third

 student
 …

 L01

 L02

 L03

 L04

 L05

 :

 L0N

When To Use Lists Of Different Dimensions (3)

• (2D list continued)

• Notice that each row is merely a 1D list

• (A 2D list is a list containing rows of 1D lists)

 L02

L07

 L01

 L03

L04

[0] [1] [2] [3]

[0]

[1]

[2]

[3]

[4]

[5]

[6]

Columns

Rows

•L06

•L05

Important:

List elements are

specified in the order of

[row] [column]

Specifying only a single

value specifies the row

11/4/2013

Composites 32

Creating And Initializing A Multi-Dimensional
List In Python (Fixed Size)

General structure
 <list_name> = [[<value 1>, <value 2>, ... <value n>],

 [<value 1>, <value 2>, ... <value n>],

 : : :

 : : :

 [<value 1>, <value 2>, ... <value n>]]

Rows

Columns

Name of the example program: display2DList.py
matrix = [[0, 0, 0],

 [1, 1, 1],

 [2, 2, 2],

 [3, 3, 3]]

for r in range (0, 4, 1):

 print (matrix[r]) # Each print displays a 1D list

for r in range (0,4, 1):

 for c in range (0,3,1):

 sys.stdout.write(str(matrix[r][c]))

 print()

print(matrix[2][0]) #2 not 0

Creating And Initializing A Multi-Dimensional
List In Python (2): Fixed Size

i = 0

i = 1

i = 2

i = 3

11/4/2013

Composites 33

Creating And Initializing A Multi-Dimensional
List In Python (3)

General structure (Using
loops):
• Create a variable that refers to a

1D list.

• One loop (outer loop) traverses
the rows.

• Each iteration of the outer loop
creates a new 1D list.

• Then the inner loop traverses the
columns of the newly created 1D
list creating and initializing each
element in a fashion similar to
how a single 1D list was created
and initialized.

• Repeat the process for each row
in the list

Row r = 0

c=0 c=1 c=2 c=3

List ref

Row r = 1

Row r = 2

Etc.

James Tam

Creating And Initializing A Multi-Dimensional List In
Python (4)

• Example (Using loops):
aGrid = [] # Create a reference to the list

for r in range (0, 3, 1): # Outer loop runs once for each row

 aGrid.append ([]) # Create an empty row (a 1D list)

 for c in range (0, 3, 1): # Inner loop runs once for each column

 aGrid[r].append (" ") # Create and initialize each element

 # (space) of the 1D list

11/4/2013

Composites 34

Example 2D List Program: A Character-Based
Grid

•Name of the example program: simple_grid.py

import sys

aGrid = []

for r in range (0,2,1):

 aGrid.append ([])

 for c in range (0,3,1):

 aGrid[r].append (str(r+c))

for r in range (0,2,1):

 for c in range (0,3,1):

 sys.stdout.write(str(aGrid[r][c]))

 print()

Quick Note” List Elements Need Not Store The
Same Data Type

• This is one of the differences between Python lists and arrays
in other languages

• Example:
aList = [“James”, “Tam”, “210-9455”, 707]

11/4/2013

Composites 35

Tuples

• Much like a list, a tuple is a composite type whose elements
can consist of any other type.

• Tuples support many of the same operators as lists such as
indexing.

• However tuples are immutable.

• Tuples are used to store data that should not change.

Creating Tuples

• Format:
tuple_name = (value1, value2...valuen)

• Example:
tup = (1,2,"foo",0.3)

11/4/2013

Composites 36

A Small Example Using Tuples

• Name of the online example: tuples1.py

tup = (1,2,"foo",0.3)

print (tup)

print (tup[2])

tup[2] = "bar"

Error (immutable):

“TypeError: object does not support item assignment”

• Although it appears that functions in Python can return multiple values
they are in fact consistent with how functions are defined in other
programming languages.

• Functions can either return zero or exactly one value only.

• Specifying the return value with brackets merely returns one tuple back to
the caller.

def fun ():

 return (1,2,3)

def fun (num):

 if (num > 0):

 print “pos”

 return()

 elif (num < 0):

 print “neg”

 return()

Function Return Values

Returns: A tuple with three elements

Nothing is returned back to the caller

11/4/2013

Composites 37

Functions Changing Multiple Items

• Because functions only return 0 or 1 items (Python returns one
composite) the mechanism of passing by reference (covered
earlier in this section) is an important concept.
– What if more than one change must be communicated back to the caller

(only one entity can be returned).

– Multiple parameters can be passed by reference.

Extra Practice

String:
– Write the code that implements string operations (e.g., splitting) or

string functions (e.g., determining if a string consists only of numbers)

List operations:
– For a numerical list: implement some common mathematical functions

(e.g., average, min, max, mode).

– For any type of list: implement common list operations (e.g., displaying
all elements one at a time, inserting elements at the end of the list,
insert elements in order, searching for elements, removing an element).

11/4/2013

Composites 38

After This Section You Should Now Know

• The difference between a simple vs. a composite type

• What is the difference between a mutable and an immutable
type

• How strings are actually a composite type

• Common string functions and operations

• Why and when a list should be used

• How to create and initialize a list (fixed and dynamic size)

• How to access or change the elements of a list

• How to search a list for matches

• Copying lists: How does it work/How to do it properly

After This Section You Should Now Know (2)

• When to use lists of different dimensions

• Basic operations on a 2D list

• What is a tuple, common operations on tuples such as
creation, accessing elements, displaying a tuple or elements

• How functions return zero or one item

• What is a reference and how it differs from a regular variable

• Why references are used

• The two parameter passing mechanisms: pass-by-value and
pass-by-reference

• How to use the write() function in the 'system' library

