
Programming: problem decomposition into functions 1

Functions: Decomposition And Code
Reuse

This section of notes shows you how to write

functions that can be used to: decompose

large problems, and to reduce program size

by creating reusable sections.

Example Programs

•Location (via the WWW):
- http://pages.cpsc.ucalgary.ca/~tamj/217/examples/decomposition

•Location (via the CPSC UNIX network):
- /home/courses/217/examples/decomposition

Programming: problem decomposition into functions 2

Tip For Success: Reminder

•Look through the examples and notes before class.

•This is especially important for this section because the

execution of these programs will not be in sequential order.

•Instead execution will appear to ‘jump around’ so it will be

harder to understand the concepts and follow the examples

illustrating those concepts if you don’t do a little preparatory

work.

Solving Larger Problems

•Sometimes you will have to write a program for a large and/or

complex problem.

•One technique employed in this type of situation is the top down

approach to design.
- The main advantage is that it reduces the complexity of the problem

because you only have to work on it a portion at a time.

Programming: problem decomposition into functions 3

Top Down Design

1. Start by outlining the major parts (structure)

2. Then implement the solution for each part

My autobiography

Chapter 1:

The humble beginnings

Chapter 2:

My rise to greatness

… Chapter 7:

The end of an era

Chapter 1: The humble beginnings

It all started ten and one score years ago

with a log-shaped work station…

Breaking A Large Problem Down

Figure extracted from Computer Science Illuminated by Dale N. and Lewis J.

General approach

Approach
to part of
problem

Specific
steps of
the
solution

Abstract/
General

Particular

Top

Bottom

Approach
to part of
problem

Approach
to part of
problem

Specific
steps of
the
solution

Specific
steps of
the
solution

Specific
steps of
the
solution

Programming: problem decomposition into functions 4

Procedural Programming

•Applying the top down approach to programming.

•Rather than writing a program in one large collection of

instructions the program is broken down into parts.

•Each of these parts are implemented in the form of procedures

(also called “functions” or “methods” depending upon the

programming language).

Procedural Programming

Main tasks to

be fulfilled by

the program

Important

subtask #1

Important

subtask #2

Important

subtask #3

Function #1

…Etc.

Function #2 Function #3 …Etc.

Programming: problem decomposition into functions 5

Why Decompose

•Why not just start working on the details of the solution without

decomposing it into parts.
- “I want to *do* not plan and design!”

•Potential problems:
–Redundancies and lack of coherence between sections.

–Trying to implement all the details of large problem all at once may prove

to be overwhelming (“Where do I start???!!!”)

Here is the first of my many witty

anecdotes, it took place in a “Tim

Horton’s” in Balzac..

Just start writing

without worrying

about how things will

be laid out and

structured.

An actual assignment

from this class

Decomposing A Problem Into Procedures

•Break down the program by what it does (described with

actions/verbs).

•Eventually the different parts of the program will be

implemented as functions.

Programming: problem decomposition into functions 6

Example Problem

• Design a program that will perform a simple interest

calculation.

• The program should prompt the user for the appropriate values,

perform the calculation and display the values onscreen.

• Action/verb list:
- Prompt

- Calculate

- Display

Top Down Approach: Breaking A Programming
Problem Down Into Parts (Functions)

Calculate Interest

Get information Do calculations Display results

Programming: problem decomposition into functions 7

Things Needed In Order To Use Functions

•Definition
- Instructions that indicate what the function will do when it runs.

•Call
- Actually running (executing) the function.

•Note: a function can be called multiple (or zero) times but it can

only be defined once. Why?

Functions (Basic Case)

Function call

Function definition

Programming: problem decomposition into functions 8

Defining A Function

•Format:

 def <function name> ():

 body1

•Example:

 def displayInstructions ():

 print ("Displaying instructions on how to use the program")

1 Body = the instruction or group of instructions that execute when the function executes.

The rule in Python for specifying what statements are part of the body is to use indentation.

Calling A Function

•Format:

 <function name> ()

•Example:

 displayInstructions()

Programming: problem decomposition into functions 9

Functions: An Example That Puts Together All The
Parts Of The Easiest Case

•Name of the example program: firstExampleFunction.py

def displayInstructions ():

 print ("Displaying instructions")

Main body of code (starting execution point)

displayInstructions()

print ("End of program")

Functions: An Example That Puts Together All The
Parts Of The Easiest Case

•Name of the example program: firstExampleFunction.py

def displayInstructions ():

 print ("Displaying instructions")

Main body of code (starting execution point)

displayInstructions()

print ("End of program")

Function

definition

Function call

Programming: problem decomposition into functions 10

Defining The Main Body Of Code As A Function

•Rather than defining instructions outside of a function the main starting

execution point can also be defined explicitly as a function.

•(The previous program rewritten to include an explicit start function)

“firstExampleFunction2.py”

def displayInstructions ():

 print ("Displaying instructions")

def start ():

displayInstructions()

print ("End of program")

•Important: If you explicitly define the starting function then do not forgot to

explicitly call it!

start () Don’t forget to start

your program!

Functions Should Be Defined Before They Can Be
Called!

•Correct
def fun ():

 print ("Works“)

start

fun ()

•Incorrect
fun ()

def fun ():

 print ("Doesn't work“)

Function

definition

Function

call

Function

definition

Function

call

Programming: problem decomposition into functions 11

Another Common Mistake

•Forgetting the brackets during the function call:

def fun ():

 print ("In fun")

start function

print ("In start")

fun

Another Common Mistake

•Forgetting the brackets during the function call:

def fun ():

 print ("In fun")

start function

print ("In start")

fun ()

The missing set

of brackets

does not

produce a

translation error

Programming: problem decomposition into functions 12

Another Common Problem: Indentation

•Recall: In Python indentation indicates that statements are part

of the body of a function.

•(In other programming languages the indentation is not a

mandatory part of the language but indenting is considered good

style because it makes the program easier to read).

•Forgetting to indent:
def start ():

print ("start“)

start ()

Another Common Problem: Indentation (2)

•Inconsistent indentation:
def start ():

 print ("first“)

 print ("second“)

start ()

Programming: problem decomposition into functions 13

Yet Another Problem: Creating ‘Empty’ Functions

def fun ():

start

fun()

Problem: This statement

appears to be a part of the

body of the function but it is

not indented???!!!

Yet Another Problem: Creating ‘Empty’
Functions (2)

def fun ():

 print ()

start

fun()

A function

must have

at least one

statement

Alternative (writing an

empty function:

literally does nothing)

def fun ():

 pass

start

fun ()

Programming: problem decomposition into functions 14

•Variables are memory locations that are used for the temporary

storage of information.

num = 0

•Each variable uses up a portion of memory, if the program is

large then many variables may have to be declared (a lot of

memory may have to be allocated to store the contents of

variables).

What You Know: Declaring Variables

 0 num

RAM

What You Will Learn: Using Variables That Are
Local To A Function

•To minimize the amount of memory that is used to store the

contents of variables only declare variables when they are

needed.

•When the memory for a variable is no longer needed it can be

‘freed up’ and reused.

•To design a program so that memory for variables is only

allocated (reserved in memory) as needed and de-allocated

when they are not (the memory is free up) variables should be

declared as local to a function.

Programming: problem decomposition into functions 15

What You Will Learn: Using Variables That Are
Local To A Function (2)

Function call (local variables

get allocated in memory)

The program code in the function executes (the

variables are used to store information for the

function)

Function ends (local variables

get de-allocated in memory)

Where To Create Local Variables

def <function name> ():

Example:
def fun ():

 num1 = 1

 num2 = 2

Somewhere within

the body of the

function (indented

part)

Programming: problem decomposition into functions 16

Working With Local Variables: Putting It All
Together

•Name of the example program: secondExampleFunction.py

def fun ():

 num1 = 1

 num2 = 2

 print (num1, " ", num2)

start function

fun()

Variables that

are local to

function ‘fun’

Another Reason For Creating Local Variables

•To minimize side effects (unexpected changes that have

occurred to variables after a function has ended e.g., a variable

storing the age of the user takes on a negative value).

•To visualize the potential problem: imagine if all variables could

be accessed anywhere in the program (not local).

Memory

Fun1 ()

Fun2 ()

Fun3 () variable

??? ???

???

Programming: problem decomposition into functions 17

New Problem: Local Variables Only Exist Inside A
Function

def display ():

 print ("")

 print ("Celsius value: ", celsius)

 print ("Fahrenheit value :", fahrenheit)

def convert ():

 celsius = float(input ("Type in the celsius temperature: "))

 fahrenheit = celsius * 9 / 5 + 32

 display ()

Variables celsius

and fahrenheit are

local to function

‘convert’

What is ‘celsius’???

What is ‘fahrenheit’???

New problem: How to access local

variables outside of a function?

Solution: Parameter Passing

•Variables only exist inside the memory of a function:

convert

celsius

fahrenheit

Parameter passing:

communicating information

about local variables

(arguments) into a function

display

Celsius? I know that value!

Fahrenheit? I know that value!

Programming: problem decomposition into functions 18

Parameter Passing (Function Definition)

•Format:
 def <function name> (<parameter 1>, <parameter 2>...):

•Example:
 def display (celsius, fahrenheit):

Parameter Passing (Function Call)

•Format:
 <function name> (<parameter 1>, <parameter 2>...)

•Example:
 display (celsius, fahrenheit):

Programming: problem decomposition into functions 19

Memory And Parameter Passing

•Parameters passed as arguments into functions become variables

in the local memory of that function.

def fun (num1):

 print (num1)

 num2 = 20

 print (num2)

def start ():

 num1 = 1

 fun (num1)

start ()

num1: local to start

Parameter num1: local to fun

num2: local to fun

Parameter Passing: Putting It All Together

•Name of the example program: temperature.py

def introduction ():

 print ("""

Celsius to Fahrenheit converter

This program will convert a given Celsius temperature to an equivalent

Fahrenheit value.

 """)

Programming: problem decomposition into functions 20

Parameter Passing: Putting It All Together (2)

def display (celsius, fahrenheit):

 print ("")

 print ("Celsius value: ", celsius)

 print ("Fahrenheit value:", fahrenheit)

def convert ():

 celsius = float(input ("Type in the celsius temperature: "))

 fahrenheit = celsius * 9 / 5 + 32

 display (celsius, fahrenheit)

start function

def start ():

 introduction ()

 convert ()

start ()

•A parameter is copied into a local memory space.

•For stylistic reasons: the names should match (unless there is a

compelling reason not to match).

•However because they are separate memory locations there are

no technical reasons why the parameter and the local variable

names must match.

Parameter Passing: Important Recap!

display (celsius, fahrenheit) # Function call

def display (celsius, fahrenheit): # Function definition

Make copy Make copy

Programming: problem decomposition into functions 21

The Type And Number Of Parameters Must Match!

•Correct :

def fun1 (num1, num2):

 print (num1, num2)

def fun2 (num1, str1):

 print (num1, str1)

start

def start ():

 num1 = 1

 num2 = 2

 str1 = "hello"

 fun1 (num1, num2)

 fun2 (num1, str1)

start ()

Two numeric

parameters are

passed into the call

for ‘fun1’ which

matches the two

parameters listed

in the definition for

function ‘fun1’

Two parameters (a

number and a string)

are passed into the call

for ‘fun2’ which

matches the type for

the two parameters

listed in the definition

for function ‘fun2’

Another Common Mistake: The Parameters
Don’t Match

•Incorrect :

def fun1 (num1):

 print (num1, num2)

def fun2 (num1, num2):

 num1 = num2 + 1

 print (num1, num2)

start

def start ():

 num1 = 1

 num2 = 2

 str1 = "hello"

 fun1 (num1, num2)

 fun2 (num1, str1)

start ()

Two numeric

parameters are

passed into the call

for ‘fun1’ but only

one parameter is

listed in the

definition for

function ‘fun1’

Two parameters (a

number and a string)

are passed into the

call for ‘fun2’ but in

the definition of the

function it’s

expected that both

parameters are

numeric.

Programming: problem decomposition into functions 22

Yet Another Common Mistake: Not Declaring
Parameters

You wouldn’t do it this way:

def start ():

 print(num)

So why do it this way:
Etc. (Assume fun has been defined)

start

def start ():

 fun(num)

start ()

What is ‘num’? It

has not been

declared in function

‘start’

What is ‘num’? It

has not been

declared in function

‘start’

Default Parameters

•Can be used to give function arguments some default values if

none are provided.

•Example function definition:
def fun (x = 1, y = 1):

 print (x, y)

•Example function calls (both work):
- fun ()

- fun (2, 20)

Programming: problem decomposition into functions 23

Default Parameters: Application

•It can be useful if one function may require different parameters

at different times.

•Examples: print(), input()

•Use of the print function does not require other programmers to

remember different versions of these functions

•(The print() function isn’t defined this way – fortunately)
- e.g., printInt(10), printFloat(10.2), printIntFloat(10, 9.9)

•(Print is written to automatically allow for different parameters)

- E.g., print(10), print(3.33), print(3.14,10) etc..

•Providing default parameters could allow for functions like

these to be called using different parameter lists but not

requiring different versions of the functions to be defined/called.

Good Style: Functions

1. Each function should have one well defined task. If it doesn’t

then it may be a sign that it should be decomposed into

multiple sub-functions.
a) Clear function: A function that converts lower case input to capitals.

b) Ambiguous function: A function that prompts user for a string and
then converts that string to upper case.

2. (Related to the previous point). Functions should have a self

descriptive action-oriented name (verb or a question): the

name of the function should provide a clear indication to the

reader what task is performed by the function.
a) Good: isNum(), isUpper(), toUpper()

b) Bad: doIt(), go()

3. Try to avoid writing functions that are longer than one screen

in size.
a) Tracing functions that span multiple screens is more difficult.

Programming: problem decomposition into functions 24

Good Style: Functions (2)

4. The conventions for naming variables should also be applied

in the naming of functions.
a) Lower case characters only.

b) With functions that are named using multiple words capitalize the first

letter of each word but the first (most common approach) or use the

underscore (less common). Example: toUpper()

Parameter Passing

•What you know about scope: Parameters are used to pass the

contents of variable into functions (because the variable is not in

scope).

def fun1():

 num = 10

 fun2 (num)

def fun2(num):

 print(num)

Programming: problem decomposition into functions 25

New Problem: Results That Are Derived In One
Function Only Exist Until The Function Ends

def calculateInterest (principle, rate, time):

 interest = principle * rate * time

start

 principle = 100

 rate = 0.1

 time = 5

 calculateInterest (principle, rate, time)

print (“Interest earned $”, interest)

Stored locally

interest = 50

Problem:

Value stored in

interest cannot be

accessed here

Solution: Have Function Return Values Back
To The Caller

def calculateInterest (principle, rate, time):

 interest = principle * rate * time

 return interest

start

 principle = 100

 rate = 0.1

 time = 5

 interest = calculateInterest (principle, rate, time)

print (“Interest earned $”, interest)

Variable ‘interest’

is local to the

function.

The value stored in the

variable ‘interest’ local

to ‘calculateInterest’ is

passed back and stored

in a variable that is local

to the start function.

Programming: problem decomposition into functions 26

Using Return Values

•Format (Single value returned):
 return (<value returned>) # Function definition

 <variable name> = <function name> () # Function call

•Example (Single value returned):

 return(interest) # Function definition

 interest = calculateInterest (principle, rate, time) # Function call

Using Return Values

•Format (Multiple values returned):
 return (<value1>, <value 2>...) # Function definition

 <variable 1>, <variable 2>... = <function name> () # Function call

•Example (Multiple values returned):

 return (principle, rate, time) # Function definition

 principle, rate, time = getInputs (principle, rate, time) # Function call

Programming: problem decomposition into functions 27

Using Return Values: Putting It All Together

•Name of the example program: interest.py

def introduction ():

 print ("""

Simple interest calculator

With given values for the principle, rate and time period this program

will calculate the interest accrued as well as the new amount (principle

plus interest).

 """)

Using Return Values: Putting It All Together (2)

def getInputs ():

 principle = float (input("Enter the original principle: "))

 rate = float(input("Enter the yearly interest rate %"))

 rate = rate / 100

 time = input("Enter the number of years that money will be invested:

 ")

 time = float(time)

 return (principle, rate, time)

def calculate (principle, rate, time):

 interest = principle * rate * time

 amount = principle + interest

 return (interest, amount)

Programming: problem decomposition into functions 28

Using Return Values: Putting It All Together (3)

def display (principle, rate, time, interest, amount):

 temp = rate * 100

 print ("")

 print ("Investing $%.2f" %principle, "at a rate of %.2f" %temp, "%")

 print ("Over a period of %.0f" %time, "years...")

 print ("Interest accrued $", interest)

 print ("Amount in your account $", amount)

Using Return Values: Putting It All Together (4)

start function

def start ():

 principle = 0

 rate = 0

 time = 0

 interest = 0

 amount = 0

 introduction ()

 principle, rate, time = getInputs ()

 interest, amount = calculate (principle, rate, time)

 display (principle, rate, time, interest, amount)

start ()

Programming: problem decomposition into functions 29

Yet Another Common Mistake:
Not Saving Return Values

•Just because a function returns a value does not automatically

mean the value will be usable by the caller of that function.

def fun ():

 return (1)

•That is because return values have to be explicitly saved by the

caller of the function.

•Example

def calculateArea ():

 length = 4

 width = 3

 area = length * width

 return (area)

start

area = 0

calculateArea()

print area

This value has to be stored or used

in some expression by the caller

Fixed start

area = 0

area = calculateArea ()

print area

Local Variables

•What you know:
- How to declare variables that only exist for the duration of a function call.

- Why should variables be declared locally.

•What you will learn:
- How scoping rules determine where variables can be accessed.

- The difference between local and global scope.

- (Previous examples may have implicitly included some of these concepts

but the next section will explicitly describe how they work).

Programming: problem decomposition into functions 30

Scope

•The scope of an identifier (variable, constant) is where it may be

accessed and used.

•In Python1:
- An identifier comes into scope (becomes visible to the program and can be

used) after it has been declared.

- An identifier goes out of scope (no longer visible so it can no longer be

used) at the end of the indented block where the identifier has been

declared.

1 The concept of scoping applies to all programming languages. The rules for determining when

identifiers come into and go out of scope will vary with a particular language.

Scope: An Example

 def fun1 ():

 num = 10

 # statement

 # statement

 # End of fun1

 def fun2 ():

 print num

 : :

‘num’ comes into

scope (is visible

and can be used)

(End of function): num

goes out of scope, no

longer accessible

Scope

of num

Num is

no longer

in scope

Error: num is an

unknown identifier

Programming: problem decomposition into functions 31

Scope: A Variant Example

 def fun1 ():

 num = 10

 # statement

 # statement

 # End of fun1

 def fun2 ():

 fun1 ()

 num = 20

 : :

What happens at this

point?

Why?

Global Scope

•Identifiers (constants or variables) that are declared within the

body of a function have a local scope (the function).
def fun ():

 num = 12

 # End of function fun

•Identifiers (constants or variables) that are declare outside the

body of a function have a global scope (the program).
num = 12

def fun1 ():

 # Instruction

def fun2 ():

 # Instruction

End of program

Scope of num is the function

Scope of num is the entire program

Programming: problem decomposition into functions 32

Global Scope: An Example

•Name of the example program: globalExample1.py

num1 = 10

def fun ():

 print (num1)

def start ():

 fun ()

 print (num2)

num2 = 20

start ()

Global Variables: General Characteristics

•You can access the contents of global variables anywhere in the

program.

•In most programming languages you can also modify global

variables anywhere as well.
- This is why the usage of global variables is regarded as bad programming

style, they can be accidentally modified anywhere in the program.

- Changes in one part of the program can introduce unexpected side effects

in another part of the program.

- So unless you have a compelling reason you should NOT be using global

variables but instead you should pass values as parameters.

Programming: problem decomposition into functions 33

Global Variables: Python Specific Characteristic

•Name of the example program: globalExample2.py

num = 1

def fun ():

 num = 2

 print (num)

def start ():

 print (num)

 fun ()

 print (num)

start ()

Python Globals: Read But Not Write Access

•By default global variables can be accessed globally (read

access).

•Attempting to change the value of global variable will only

create a new local variable by the same name (no write access).

num = 1

def fun ():

 num = 2

 print (num)

•Prefacing the name of a variable with the keyword ‘global’ will

indicate that all references in that function will then refer to the

global variable rather than creating a local one.
global <variable name>

Global num

Local num

Programming: problem decomposition into functions 34

Globals: Another Example

•Name of the example program: globalExample3.py

num = 1

def fun1 ():

 num = 2

 print (num)

def fun2 ():

 global num

 num = 2

 print (num)

Globals: Another Example (2)

def start ():

 print (num)

 fun1 ()

 print (num)

 fun2 ()

 print (num)

start ()

Programming: problem decomposition into functions 35

Function Pre-Conditions

•Specifies things that must be true when a function is called.

•Examples:
Precondition: Age must be a non-negative number

def convertCatAge (catAge):

 humanAge = catAge * 7

 return humanAge

Precondition: y is a numeric non-zero value

def divide (x, y):

 z = x / y

 return z

Ensuring That Preconditions Are Met

•If a function is called when the preconditions are not met will

result in a serious error then the author of the function should

not allow the instructions of that function to execute.

•Example (a better version of the previous example):
Precondition: Age must be a non-negative number

def convertCatAge (catAge):

 if (catAge >= 0):

 humanAge = catAge * 7

 else:

 print("Age cannot be negative")

 humanAge = -1 #JT: Signal to caller than an error occurred

 return (humanAge)

Programming: problem decomposition into functions 36

Function Post-Conditions

•Specifies things that must be true when a function ends.

•Example:
def absoluteValue (number):

 if (number < 0):

 number = number * -1

 return number

 # Post condition: number is non-negative

Documenting Functions

•Functions are a ‘mini’ program.

•Consequently the manner in which an entire program is

documented should also repeated in a similar process for each

function:
- Features list.

- Limitations, assumptions or preconditions e.g., if a function will divide

two parameters then the documentation should indicate that the function

precondition is the denominator is not zero.

- (Authorship and version number may or may not be necessary for the

purposes of this class although they are frequently included in actual

practice).

Programming: problem decomposition into functions 37

Why Employ Problem Decomposition And Modular
Design

• Drawback
- Complexity – understanding and setting up inter-function

communication may appear daunting at first.

- Tracing the program may appear harder as execution appears to “jump”
around between functions.

• Benefit
- Solution is easier to visualize and create (decompose the problem so

only one part of a time must be dealt with).

- Easier to test the program (testing all at once increases complexity).

- Easier to maintain (if functions are independent changes in one function
can have a minimal impact on other functions, if the code for a function
is used multiple times then updates only have to be made once).

- Less redundancy, smaller program size (especially if the function is
used many times throughout the program).

- Smaller programs size: if the function is called many times rather than
repeating the same code, the function need only be defined once and
then can be called many times.

After This Section You Should Now Know

• How and why the top down approach can be used to
decompose problems

- What is procedural programming

• How to write the definition for a function

• How to write a function call

• How and why to declare variables locally

• How to pass information to functions via parameters

• Good programming principles for implementing functions

• How and why to return values from a function.

• What is the difference between a local and a global variable.

• How to implement and test and program that is decomposed
into functions.

• Two approaches for problem solving.

