
CPSC 233: Assignment 4

CPSC 233: Assignment 4 (Due March 26 at 4 PM)

New learning concepts: Problem solving using object-oriented programming. Aside from

main() you cannot implement other static methods. Also you should not be including any

static variable attributes in your class definitions (class constants may be okay on an as needed

basis). You will be given the code for the Driver and Oracle classes; and you must implement

the methods in the Detective, Person, Location, and Time classes. Don’t change the Driver

and Oracle classes because they will be used by the markers to test your program

Problem Statement:

In this assignment, you will complete a program that simulates a murder mystery game. There

are two entities in the simulation: the Oracle and the detective. The Oracle knows the exact

description of the murderer, the location, and the time, which is the information read from an

input file (e.g., oracle.txt). The detective gets the information of all suspects from another input

file (e.g., suspects.txt). You may assume that there will be no more than 20 suspects in the file.

The detective may query the Oracle for each suspect, but the Oracle will only response with a

numerical score indicating how much the information provided matches the actual murder case.

The goal of the detective is to identify the murderer, the location, and the time by going through

a minimum number of suspects and query the Oracle as little as possible. (The fewer the queries,

the higher will be your grade).

Program description:

In this assignment, you are given the Driver class and the implementation of the Oracle. The

Driver class creates the Oracle and passes a string containing the actual details of the murder.

The string is read from a file (e.g., oracle.txt). The Driver then creates the detective and asks the

detective to check each of the suspects (e.g., information coming from suspects.txt) until the

actual murder case is identified. In the input files for both the Oracle and the detective, the

murder case and the suspect cases are presented in a single line in the following format:

<gender>, <age range>, <height>; <x>, <y>; <hh>:<mm>

, where a person is identified by gender (‘M’ for male or ‘F’ for female), age range (an integer),

and height in meters (a real number), a location is identified by the (x, y) coordinate in a 2D map

(with x as the x-coordinate and y as the y-coordinate), and the time is defined by the hour (in 24-

hour format) and the minute. You may assume that the input files are error-free and follows the

exact format as defined here.

In the input file for the Oracle (e.g., oracle.txt), there will be one and only one line presenting the

actual information about the murder: the actual combination of “person”, “location” and “time”.

This information will be parsed and stored by the Oracle so it can answer queries from the

detective on whether the suspected cases (other combinations of person, location, and time) are

correct or how close were the cases. In the input file for the detective (e.g., suspects.txt), there

will be a list of suspected cases: one suspect per line following the same format as the other file.

The detective reasons about the murder by processing these cases and querying the Oracle.

CPSC 233: Assignment 4

The implementation of the Oracle class includes the following members:

 private Person murderer;

The murderer description, an instance of class Person with the attributes for gender, age

range, and height.

 private Location murderLocation;

The location of the murder case, an instance of class Location with the attributes for the x-y

coordinates of the city in a 2D map.

 private Time murderTime;

The time of the murder case, an instance of class Time with the attributes for hour and

minute.

 private int count;

The number of times the Oracle is queried.

 public Oracle (String line);

The constructor first parses (separates the line into parts) the murder information presented in

the string line. The line, the one and only one line from the input file for the Oracle (e.g.,

oracle.txt), is passed here by the Driver class. This constructor then initializes the

murderer, murderLocation, and murderTime according to the information presented in the

string line.

 public double checkPerson(Person suspect);

A method that matches the description of the suspect with the murderer’s and returns a score

indicating the difference between the suspect and the murderer. The score is determined

by match() from the Person class.
1

 public double checkLocation(Location suspectLocation);

A method that matches the suspect’s location information with the murder location and

returns the distance between the suspectLocation and the murderLocation. The distance

is determined by match() from the Location class.
1

 public int checkTime(Time suspectTime);

A method that matches the suspect’s time with the murder time and returns a score indicating

how close the suspectTime is to the murderTime. The score is determined by match() from

the Time class.
1

 public void getCount();

A method returns the number of times the Oracle is queried.

Partial implementation of the Person, Location, and Time classes are also provided to you.

Below is the definition of the data member of each class. You will complete the methods

(defined later) in these classes.

 public class Person:
o private char gender;

Defines the gender of the person: ‘M’ as male, ‘F’ as female, and ‘U’ as defined.
o private int ageRange;

Defines the age range of a person: 10 means teenagers, 20 means 20’s (20, 21,

22…29), 30 means 30’s, and so on. Valid age ranges are 10’s, 20’s, and up to 90’s.

1 See the detailed description of the match() method on the next page.

CPSC 233: Assignment 4

o private double height;

Defines the height of a person in meters.

 public class Location:
o private double x;

The x coordinate of the location in a 2D map.
o private double y;

The y coordinate of the location in a 2D map.

 public class Time:
o private int hour;

Defines the hour in the 24-hour format. Valid values include 0, 1, 2, …, 23.
o private int min;

Defines the minute. Valid values include 0, 1, 2, …, 59.

Your first task is to complete the implementation of the Person, Location, and Time classes,

including:

 completing the match() method, as defined below, in each class;

o public double match(Person individual); // in the Person class

This method matches the given individual with the person defined in this object,

and returns a real number N to indicate the difference. The number N is calculated

as:

, where N1 equals to 0 if the gender matches and 100 otherwise, N2 is the absolute

difference between the age ranges, and N3 is the absolute different between the

heights of the individual with the person defined in this object.
2

o public double match(Location loc); // in the Location class

Assume that the locations are defined by the (x, y) coordinate in a 2D map, this

method determines the distance between the given loc with the location defined in

this object using the following formula:

 √

, where (x1, y1) is the location defined in loc and (x2, y2) is the location defined in

this object. Please be careful when comparing variables of type double, as they

might have many points of precisions after arithmetic calculations.
2

o public int match(Time t); // in the Time class

This method computes and returns a score indicating how close is the time t to the

time defined in this object. The score is defined as follows:

 {

, where d is the absolute time difference in hours.
2

 adding necessary accessors (get methods) and mutators (set methods);

2 These methods may be called by both the Detective and the Oracle classes, potentially with

data from either file.

CPSC 233: Assignment 4

 adding other methods or data members on an as needed basis

You next task is to design and implement the Detective class, including:

 adding necessary data members.

 completing the following public methods and the constructor;
o public Detective (Oracle ora);

This method initializes all data members as well as the reference to the Oracle,

theOracle.
o public boolean check (String line);

This method checks a suspect and analyzes the murder case based on the response

from the Oracle. The information of the suspect, line, in the string format is

provided by the Driver class. For each suspect, the method may query the oracle

with an analysis based on information from previously examined suspects. The goal

is to determine the murderer, the location, and the time by checking as few suspects

as possible and querying the Oracle as little as possible.

Hint: knowing the time difference returned by Oracle.checkTime(), the detective

can rule out certain suspect times. Similarly, the detective can rule out certain cases

or derive clues based on the score and the distance returned by

Oracle.checkPerson() and Oracle.checkLocation(), respectively.
o public String toString ();

This method provides the string representation of the murder information identified

by the detective. Please see the sample output for the format.

 adding necessary private methods to support the algorithm implemented in check().

Sample input files are provided for testing purpose. In the input file for the Oracle (oracle.txt),

the murder case is described as:

M, 20, 1.75; 50, -144; 19:30

Given the suspects in suspects.txt, the output of your program should be the following:

Note the numbers in the above sample output are based on a version of our solution. The actual

number of queries and suspects that your program displays depends on your algorithm and the

input file you are using. Although the information found by the detective is the same as the

information provided to the Oracle in oracle.txt, the detective must find this information from

examining the suspects from the suspects.txt and querying the Oracle, not by reading the answer

from oracle.txt. You may assume that there will be no more than 20 suspects in the input file.

Your program will receive higher score for checking less number of suspects and querying

Oracle less. Please see the marking key for specific details.

Number to times the Oracle is queried: 13

Number of suspects checked: 6

Detective found:

Person: male, 20's, 1.75m

Location: 50, -144

Time: 19:30

CPSC 233: Assignment 4

Programming Requirements:

In this assignment, you may:

 modify the Detective, Person, Location, and Time classes, including adding new data

members and methods

 create your own input files to test difference scenarios

 implement the bodies of the existing methods in Detective, Person, Location, and Time

classes

 write your own version of the Driver class to test different parts of the program

You may NOT:

 change the method signature of the given public methods in the Detective, Person,

Location, and Time classes

 change the Driver and Oracle classes provided. Your submissions will be marked using

these classes with different input files.

External libraries/methods that can be used (you don’t write yourself)

You can use pre-created code for console input and output (e.g., print and Scanner), classes for

file input and to methods convert from String to numeric types. You may also find the java

Math library useful.

Important reminders

 Assignment Guidelines: When working on your assignments, please adhere strictly to the

generic assignment submission guidelines (which apply to all assignments) as well as the

ones listed in this assignment.

 Handing in your assignment: Use the UNIX ‘submit’ program. Make sure you submit

Detective.java, Person.java, Location.java, and Time.java, with the exact file names. The

submit command is:
submit –c 233 –a 4 Detective.java Person.java Location.java Time.java

 Collaboration: Assignments must reflect individual work, group work is not allowed in

this class nor can you copy the work of others.

