
CPSC 233: Introduction to Java programming 1

James Tam

Advanced Java Programming

After mastering the basics of Java you

will now learn more complex but

important programming concepts as

implemented in Java.

James Tam

Commonly Implemented Methods

•The particular methods implemented for a class will vary

depending upon the application.

•However two methods that are commonly implemented for

many classes:
- toString

- equals

CPSC 233: Introduction to Java programming 2

James Tam

“Method: toString”

•It’s commonly written to allow easy determination of the state

of a particular object (contents of important attributes).

•This method returns a string representation of the state of an

object.

•It will automatically be called whenever a reference to an object

is passed as a parameter is passed to the “print/println” method.

•Location of the online example:
- /home/233/examples/advanced/toStringExample

- www.cpsc.ucalgary.ca/~tamj/233/examples/advanced/toStringExample

James Tam

Class Person: Version 1

public class Person

{

 private String name;

 private int age;

 public Person () {name = "No name"; age = -1; }

 public void setName (String aName) { name = aName; }

 public String getName () { return name; }

 public void setAge (int anAge) { age = anAge; }

 public int getAge () { return age; }

}

CPSC 233: Introduction to Java programming 3

James Tam

Class Person: Version 2

public class Person2

{

 private String name;

 private int age;

 public Person2 () {name = "No name"; age = -1; }

 public void setName (String aName) { name = aName; }

 public String getName () { return name; }

 public void setAge (int anAge) { age = anAge; }

 public int getAge () { return age; }

 public String toString ()

 {

 String temp = "";

 temp = temp + "Name: "+ name + "\n";

 temp = temp + "Age: " + age + "\n";

 return temp;

 }

}

James Tam

The Driver Class

class Driver

{

 public static void main (String args [])

 {

 Person p1 = new Person ();

 Person2 p2 = new Person2 ();

 System.out.println(p1);

 System.out.println(p2);

 }

}

CPSC 233: Introduction to Java programming 4

James Tam

“Method: equals”

•It’s written in order to determine if two objects of the same class

are in the same state (attributes have the same data values).

•Location of the online example:
- /home/233/examples/advanced/equalsExample

- www.cpsc.ucalgary.ca/~tamj/233/examples/advanced/equalsExample

James Tam

The Driver Class

public class Driver

{

 public static void main (String args [])

 {

 Person p1 = new Person ();

 Person p2 = new Person ();

 if (p1.equals(p2) == true)

 System.out.println ("Same");

 else

 System.out.println ("Different");

 p1.setName ("Foo");

 if (p1.equals(p2) == true)

 System.out.println ("Same");

 else

 System.out.println ("Different");

 }

}

CPSC 233: Introduction to Java programming 5

James Tam

The Person Class

public class Person

{

 private String name;

 private int age;

 public Person () {name = "No name"; age = -1; }

 public void setName (String aName) { name = aName; }

 public String getName () { return name; }

 public void setAge (int anAge) { age = anAge; }

 public int getAge () { return age; }

 public boolean equals (Person aPerson)

 {

 boolean flag;

 if ((name.equals(aPerson.getName())) && (age == aPerson.getAge ()))

 flag = true;

 else

 flag = false;

 return flag;

 }

}

James Tam

Reminder: Variables

•Think of the ‘mail box’ metaphor

•A slot containing a reference (and not data) will contain the

number of another ‘slot’ (address) in memory.

Pictures from Computers in your future by Pfaffenberger B

1002

CPSC 233: Introduction to Java programming 6

James Tam

Methods Of Parameter Passing

•Passing parameters as value parameters (pass by value)

•Passing parameters as variable parameters (pass by reference)

James Tam

Passing Parameters As Value Parameters

method (p1);

method (<parameter type> <p1>)

{

}

Pass a copy

of the data

CPSC 233: Introduction to Java programming 7

James Tam

Passing Parameters As Reference Parameters

method (p1);

method (<parameter type> <p1>)

{

}

Pass the address of the

parameter (refer to the

parameter in the method)

James Tam

Parameter Passing In Java: Simple Types

•All simple types are always passed by value in Java.

Type Description

byte 8 bit signed integer

short 16 but signed integer

int 32 bit signed integer

long 64 bit signed integer

float 32 bit signed real number

double 64 bit signed real number

char 16 bit Unicode character

boolean 1 bit true or false value

CPSC 233: Introduction to Java programming 8

James Tam

Parameter Passing In Java: Simple Types (2)

•Location of the online example:
- /home/233/examples/advanced/valueParameters

-www.cpsc.ucalgary.ca/~tamj/233/examples/advanced/valueParameters

 public static void main (String [] args)

{

 int num1;

 int num2;

 Swapper s = new Swapper ();

 num1 = 1;

 num2 = 2;

 System.out.println("num1=" + num1 + "\tnum2=" + num2);

 s.swap(num1, num2);

 System.out.println("num1=" + num1 + "\tnum2=" + num2);

}

James Tam

Passing Simple Types In Java (2)

public class Swapper

{

 public void swap (int num1, int num2)

 {

 int temp;

 temp = num1;

 num1 = num2;

 num2 = temp;

 System.out.println("num1=" + num1 + "\tnum2=" + num2);

 }

}

CPSC 233: Introduction to Java programming 9

James Tam

Passing References In Java

• (Reminder: References are required for variables that are arrays

or objects)

• Question:
-If a reference (object or array) is passed as a parameter to a method do

changes made in the method continue on after the method is finished?

Hint: If a reference is passed as a parameter into a method then a

copy of the reference is what is being manipulated in the method.

James Tam

An Example Of Passing References In Java:
UML Diagram

•Location of the online example:
- /home/233/examples/advanced/referenceParameters

-www.cpsc.ucalgary.ca/~tamj/233/examples/advanced/referenceParameters

Driver

Person

Swap

-netWorth :int

+getNum():int

+setNetWorth(netWorth:

int): void

+noSwap()

+realSwap()

CPSC 233: Introduction to Java programming 10

James Tam

An Example Of Passing References In Java:
The Driver Class

 public static void main(String [] args) {

 Person jamesTam, billGates;

 Swap s1;

 jamesTam = new Person();

 billGates = new Person();

 s1 = new Swap ();

 jamesTam.setNetWorth(1);

 billGates.setNetWorth(2000000000)

 System.out.println("Before swap:\t tam=" + jamesTam.getNetWorth()

 + "\tgates=" + billGates.getNetWorth());

 s1.noSwap(jamesTam,billGates);

 System.out.println("Before swap:\t tam=" + jamesTam.getNetWorth() +

 "\tgates=" + billGates.getNetWorth());

 s1.realSwap(jamesTam,billGates);

 System.out.println("Before swap:\t tam=" + jamesTam.getNetWorth() +

 "\tgates=" + billGates.getNetWorth());

 }

James Tam

An Example Of Passing References In Java:
Class Person

public class Person {

 private int netWorth;

 public Person() {

 netWorth = 0;

 }

 public int getNetWorth() {

 return netWorth;

 }

 public void setNetWorth(int newWorth) {

 netWorth = newWorth;

 }

}

CPSC 233: Introduction to Java programming 11

James Tam

An Example Of Passing References In Java:
Class Swap

public class Swap

{

 public void noSwap (Person p1, Person p2)

 {

 Person temp;

 temp = p1;

 p1 = p2;

 p2 = temp;

 System.out.println("In noSwap\t p1=" + p1.getNetWorth () + "\tp2=" +

 p2.getNetWorth());

 }

James Tam

An Example Of Passing References In Java:
Class Swap (2)

 public void realSwap (Person p1, Person p2)

 {

 Person temp = new Person();

 temp.setNetWorth(p1.getNetWorth());

 p1.setNetWorth(p2.getNetWorth());

 p2.setNetWorth(temp.getNetWorth());

 System.out.println("In noSwap\t p1=" + p1.getNetWorth () + "\tp2=" +

 p2.getNetWorth());

 }

} // End of class Swap

CPSC 233: Introduction to Java programming 12

James Tam

Passing By Reference For Simple Types

•It cannot be done directly in Java

•You must use a wrapper!

James Tam

Wrapper Class

•A class definition built around a simple type

e.g.,

public class IntegerWrapper

{

 private int num;

 public int getNum () { return num; }

 public void setNum (int newNum) { num = newNum; }

}

•Wrapper classes are also used to provide class-like capabilities

to simple variable types e.g., class Integer

CPSC 233: Introduction to Java programming 13

James Tam

References: Things To Keep In Mind/Reminder

•If you refer to just the name of the reference then you are
dealing with the reference (to an object, to an array).
- E.g., f1 = f2;

- This copies an address from one reference into another reference, the
original objects don’t change.

•If you use the dot-operator then you are dealing with the actual
object.
- E.g.,
- temp = f2;

- temp.setNum (f1.getNum());

- temp and f2 refer to the same object and using the dot operator changes the
object which is referred to by both references.

•Other times this may be an issue
- Assignment

- Comparisons

James Tam

Shallow Copy Vs. Deep Copies

•Shallow copy (new term, concept should be review)
- Copy the address from one reference into another reference

- Both references point to the same dynamically allocated memory location

- e.g.,

 Foo f1;

 Foo f2;

 f1 = new Foo ();

 f2 = new Foo ();

 f1 = f2;

A shortcut (‘link’ in

UNIX) is similar to a

shallow copy.

Multiple things that

refer to the same

item (document)

CPSC 233: Introduction to Java programming 14

James Tam

Shallow Vs. Deep Copies (2)

•Deep copy (new term, concept should be review)
- Copy the contents of the memory location referred to by the reference

- The references still point to separate locations in memory.

- e.g.,

 f1 = new Foo ();

 f2 = new Foo ();

 f1.setNum(1);

 f2.setNum(f1.getNum());

 System.out.println("f1=" + f1.getNum() + "\tf2=" + f2.getNum());

 f1.setNum(10);

 f2.setNum(20);

 System.out.println("f1=" + f1.getNum() + "\tf2=" + f2.getNum());

James Tam

Shallow Vs. Deep Copies (3)

Making an actual

physical copy is

similar to a deep

copy.

CPSC 233: Introduction to Java programming 15

James Tam

Comparison Of References Vs. Data(Objects)

• Location of the online example:
- /home/233/examples/advanced/comparisionsReferencesVsObjects

- www.cpsc.ucalgary.ca/~tamj/233/examples/advanced/comparisionsRefere

ncesVsObjects

public class Person

{

 private int age;

 public Person () { age = -1; }

 public void setAge (int anAge) { age = anAge; }

 public int getAge () { return age; }

}

James Tam

Comparison Of The References

public class DriverReferences

{

 public static void main (String [] args)

 {

 Person p1 = new Person ();

 Person p2 = new Person ();

 p1.setAge(1);

 p2.setAge(p1.getAge());

 if (p1 == p2)

 System.out.println("References: Same location");

 else

 System.out.println("References: different locations");

 }

}

http://www.cpsc.ucalgary.ca/~tamj/233/examples/advanced/comparisionsReferencesVsObjects
http://www.cpsc.ucalgary.ca/~tamj/233/examples/advanced/comparisionsReferencesVsObjects

CPSC 233: Introduction to Java programming 16

James Tam

Comparison Of The Data

public class DriverData

{

 public static void main (String [] args)

 {

 Person p1 = new Person ();

 Person p2 = new Person ();

 p1.setAge(1);

 p2.setAge(p1.getAge());

 if (p1.getAge() == p2.getAge())

 System.out.println("Data: Same information");

 else

 System.out.println("Data: different information");

 }

}

Implementing an ‘equals’

method once allows the

method to be used many

times when equality checks

must occur

James Tam

A Previous Example Revisited: Class Sheep

public class Sheep

{

 private String name;

 public Sheep ()

 {

 System.out.println("Creating \"No name\" sheep");

 name = "No name";

 }

 public Sheep (String aName)

 {

 System.out.println("Creating the sheep called " + n);

 setName(aName);

 }

 public String getName () { return name;}

 public void setName (String newName) { name = newName; }

}

CPSC 233: Introduction to Java programming 17

James Tam

We Now Have Several Sheep

I’m Bill! I’m
Nellie!

I’m Jim!

James Tam

Question: Who Tracks The Size Of The Herd?

Bill: Me!
Nellie: Me!

Jim: Me!

CPSC 233: Introduction to Java programming 18

James Tam

Answer: None Of The Above!

•Information about all instances of a class should not be tracked

by an individual object.

•So far we have used instance fields.

•Each instance of an object contains it’s own set of instance

fields which can contain information unique to the instance.

public class Sheep

{

 private String name;

 : : :

}

name: Jim name: Nellie name: Bill

James Tam

The Need For Static (Class Fields)

• Static fields: One instance of the field exists for the class (not

for the instances of the class)

name: Bill

object

name: Jim

object

name: Nellie

object

Class Sheep

flockSize

CPSC 233: Introduction to Java programming 19

James Tam

Static (Class) Methods

•Are associated with the class as a whole and not individual

instances of the class.

•Typically implemented for classes that are never instantiated

e.g., class Math.

•May also be used act on the class fields.

James Tam

Static Data And Methods: UML Diagram

•Location of the online example:
- /home/233/examples/advanced/staticExample

-www.cpsc.ucalgary.ca/~tamj/233/examples/advanced/staticExample

Driver

Sheep

-flockSize:int

-name: String

+Sheep()

+Sheep(newName:String)

+getFlockSize(): int

+getName (): String

+setName(newName: String):

 void

+finalize(): void

Static attribute is

specified using

underlining

CPSC 233: Introduction to Java programming 20

James Tam

Static Data And Methods: The Driver Class

public class Driver

{

 public static void main (String [] args)

 {

 System.out.println();

 System.out.println("You start out with " + Sheep.getFlockSize() + "

 sheep");

 System.out.println("Creating flock...");

 Sheep nellie = new Sheep ("Nellie");

 Sheep bill = new Sheep("Bill");

 Sheep jim = new Sheep();

James Tam

Static Data And Methods: The Driver Class (2)

 System.out.print("You now have " + Sheep.getFlockSize() + " sheep:");

 jim.setName("Jim");

 System.out.print("\t"+ nellie.getName());

 System.out.print(", "+ bill.getName());

 System.out.println(", "+ jim.getName());

 System.out.println();

 }

} // End of Driver class

CPSC 233: Introduction to Java programming 21

James Tam

Static Data And Methods: The Sheep Class

public class Sheep

{

 private static int flockSize = 0;

 private String name;

 public Sheep ()

 {

 flockSize++;

 System.out.println("Creating \"No name\" sheep");

 name = "No name";

 }

 public Sheep (String aName)

 {

 flockSize++;

 System.out.println("Creating the sheep called " + newName);

 setName(aName);

 }

James Tam

Static Data And Methods: The Sheep Class (2)

 public static int getFlockSize () { return flockSize; }

 public String getName () { return name; }

 public void setName (String newName) { name = newName; }

 public void finalize ()

 {

 System.out.print("Automatic garbage collector about to be called for ");

 System.out.println(this.name);

 flockSize--;

 }

} // End of definition for class Sheep

CPSC 233: Introduction to Java programming 22

James Tam

Accessing Static Methods/Attributes

•Inside the class definition
Format:

<attribute or method name>

Example:

 public Sheep ()

 {

 flockSize++;

 }

James Tam

Accessing Static Methods/Attributes (2)

•Outside the class definition
Format:

<Class name>.<attribute or method name>

Example:

Sheep.getFlockSize();

CPSC 233: Introduction to Java programming 23

James Tam

Rules Of Thumb: Instance Vs. Class Fields

•If a attribute field can differ between instances of a class:
-The field probably should be an instance field (non-static)

•If the attribute field relates to the class (rather to a particular

instance) or to all instances of the class
-The field probably should be a static field of the class

James Tam

Rule Of Thumb: Instance Vs. Class Methods

•If a method should be invoked regardless of the number of

instances that exist (e.g.., the method can be run when there are

no instances) then it probably should be a static method.

•If it never makes sense to instantiate an instance of a class then

the method should probably be a static method.

•Otherwise the method should likely be an instance method.

CPSC 233: Introduction to Java programming 24

James Tam

Static Vs. Final

•Static: Means there’s one instance of the field for the class (not

individual instances of the field for each instance of the class)

•Final: Means that the field cannot change (it is a constant)

public class Foo

{

 public static final int num1= 1;

 private static int num2;

 public final int num3 = 1;

 private int num4;

 : :

}

/* Why bother? */

/* Rare */

James Tam

An Example Class With A Static Implementation

public class Math

{

 // Public constants

 public static final double E = 2.71…

 public static final double PI = 3.14…

 // Public methods

 public static int abs (int a);

 public static long abs (long a);

 : :

}

•For more information about this class go to:
- http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Math.html

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Math.html

CPSC 233: Introduction to Java programming 25

James Tam

Should A Class Be Entirely Static?

•Generally it should be avoided if possible because it often

bypasses many of the benefits of the Object-Oriented approach.

•Usually purely static classes (cannot be instantiated) have only

methods and no data (maybe some constants).

•When in doubt DO NOT make attributes and methods static.

•Example candidate static class:

class Swapper

{
public noSwap (…) { }

public realSwap (…) {}

}

The class has methods but no

variable attributes (why are

separate instances needed?)

James Tam

A Common Error With Static Methods

•Recall: The “this” reference is an implicit parameter that is

automatically passed into the method calls (you’ve seen so far).

•e.g.,

•Foo f = new Foo ();

•f.setNum(10);

Explicit parameter

Implicit parameter

“this”

CPSC 233: Introduction to Java programming 26

James Tam

A Common Error With Static Methods

•Static methods have no “this” reference as an implicit parameter

(because they are not associated with any instances).

public class Driver

{

 private int num;

 public static void main (String [] args)

 {

 num = 10;

 }

}

Compilation error:

Driver3.java:6: non-

static variable num

cannot be referenced

from a static context

 num = 10;

 ^

error

James Tam

Immutable Objects

•Once instantiated they cannot change (all or nothing)

 e.g., String s = "hello";

 s = s + " there";

•Changes to immutable objects should be minimized

CPSC 233: Introduction to Java programming 27

James Tam

Minimize Modifying Immutable Objects (2)

•If you must make many changes consider substituting

immutable objects with mutable ones

e.g.,

public class StringBuffer

{

 public StringBuffer (String str);

 public StringBuffer append (String str);

 : : : :

}

For more information about this class

•http://java.sun.com/j2se/1.5.0/docs/api/java/lang/StringBuffer.html

James Tam

3. Minimize Modifying Immutable Objects (3)

public class StringExample

{

 public static void main (String []
args)

 {

 String s = "0";

 for (int i = 1; i < 100000; i++)

 s = s + i;

 }

}

public class StringBufferExample

{

 public static void main (String [] args)

 {

 StringBuffer s = new StringBuffer("0");

 for (int i = 1; i < 100000; i++)

 s = s.append(i);

 }

}

CPSC 233: Introduction to Java programming 28

James Tam

Be Cautious When Writing Accessor And Mutator
Methods: First Version

•Location of the online example:
- /home/233/examples/advanced/securityVersion1

- www.cpsc.ucalgary.ca/~tamj/233/examples/advanced/securityVersion1

public class Driver

{

 public static void main (String [] args)

 {

 CreditInfo newAccount = new CreditInfo (10, "James Tam");

 newAccount.setRating(0);

 System.out.println(newAccount);

 }

}

James Tam

5. Be Cautious When Writing Accessor And
Mutator Methods: First Version (2)

public class CreditInfo

{

 public static final int MIN = 0;

 public static final int MAX = 10;

 private int rating;

 private StringBuffer name;

 public CreditInfo ()

 {

 rating = 5;

 name = new StringBuffer("No name");

 }

 public CreditInfo (int newRating, String newName)

 {

 rating = newRating;

 name = new StringBuffer(newName);

 }

 public int getRating () { return rating;}

CPSC 233: Introduction to Java programming 29

James Tam

5. Be Cautious When Writing Accessor And
Mutator Methods: First Version (3)

 public void setRating (int newRating)

 {

 if ((newRating >= MIN) && (newRating <= MAX))

 rating = newRating;

 }

 public StringBuffer getName ()

 {

 return name;

 }

 public void setName (String newName)

 {

 name = new StringBuffer(newName);

 }

James Tam

5. Be Cautious When Writing Accessor And
Mutator Methods: First Version (4)

 public String toString ()

 {

 String s = new String ();

 s = s + "Name: ";

 if (name != null)

 {

 s = s + name.toString();

 }

 s = s + "\n";

 s = s + "Credit rating: " + rating + "\n";

 return s;

 }

} // End of class CreditInfo

CPSC 233: Introduction to Java programming 30

James Tam

Be Cautious When Writing Accessor And Mutator
Methods: Second Version

(All mutator methods now have private access).

•Location of the online example:
- /home/233/examples/advanced/securityVersion2

- www.cpsc.ucalgary.ca/~tamj/233/examples/advanced/securityVersion2

James Tam

Be Cautious When Writing Accessor And Mutator
Methods: Second Version (2)

public class Driver

{

 public static void main (String [] args)

 {

 CreditInfo newAccount = new CreditInfo (10, "James Tam");

 StringBuffer badGuyName;

 badGuyName = newAccount.getName();

 badGuyName.delete(0, badGuyName.length());

 badGuyName.append("Bad guy on the Internet");

 System.out.println(newAccount);

 }

}

CPSC 233: Introduction to Java programming 31

James Tam

5. Be Cautious When Writing Accessor And
Mutator Methods: Second Version (3)

public class CreditInfo

{

 private int rating;

 private StringBuffer name;

 public CreditInfo ()

 {

 rating = 5;

 name = new StringBuffer("No name");

 }

 public CreditInfo (int newRating, String newName)

 {

 rating = newRating;

 name = new StringBuffer(newName);

 }

James Tam

5. Be Cautious When Writing Accessor And
Mutator Methods: Second Version (4)

 public int getRating ()

 {

 return rating;

 }

 private void setRating (int newRating)

 {

 if ((newRating >= 0) && (newRating <= 10))

 rating = newRating;

 }

 public StringBuffer getName ()

 {

 return name;

 }

 private void setName (String newName)

 {

 name = new StringBuffer(newName);

 }

CPSC 233: Introduction to Java programming 32

James Tam

5. Be Cautious When Writing Accessor And
Mutator Methods: Second Version (5)

 public String toString ()

 {

 String s = new String ();

 s = s + "Name: ";

 if (name != null)

 {

 s = s + name.toString();

 }

 s = s + "\n";

 s = s + "Credit rating: " + rating + "\n";

 return s;

 }

}

James Tam

5. Be Cautious When Writing Accessor And
Mutator Methods: Third Version

•Location of the online example:
- /home/233/examples/advanced/securityVersion3

- www.cpsc.ucalgary.ca/~tamj/233/examples/advanced/securityVersion3

public class Driver

{

 public static void main (String [] args){

 CreditInfo newAccount = new CreditInfo (10, "James Tam");

 String badGuyName;

 badGuyName = newAccount.getName();

 badGuyName = badGuyName.replaceAll("James Tam", "Bad guy on
 the Internet");

 System.out.println(badGuyName + "\n");

 System.out.println(newAccount);

 }

}

CPSC 233: Introduction to Java programming 33

James Tam

5. Be Cautious When Writing Accessor And
Mutator Methods: Third Version (2)

public class CreditInfo

{

 private int rating;

 private String name;

 public CreditInfo ()

 {

 rating = 5;

 name = "No name";

 }

 public CreditInfo (int newRating, String newName)

 {

 rating = newRating;

 name = newName;

 }

 public int getRating ()

 {

 return rating;

 }

James Tam

5. Be Cautious When Writing Accessor And
Mutator Methods: Third Version (3)

 private void setRating (int newRating)

 {

 if ((newRating >= 0) && (newRating <= 10))

 rating = newRating;

 }

 public String getName ()

 {

 return name;

 }

 private void setName (String newName)

 {

 name = newName;

 }

CPSC 233: Introduction to Java programming 34

James Tam

5. Be Cautious When Writing Accessor And
Mutator Methods: Third Version (4)

 public String toString ()

 {

 String s = new String ();

 s = s + "Name: ";

 if (name != null)

 {

 s = s + name;

 }

 s = s + "\n";

 s = s + "Credit rating: " + rating + "\n";

 return s;

 }

}

James Tam

5. Be Cautious When Writing Accessor And
Mutator Methods

•When choosing a type for an attribute it comes down to

tradeoffs, what are the advantages and disadvantages of using a

particular type.

•In the previous examples:
- Using mutable types (e.g., StringBuffer) provides a speed advantage.

- Using immutable types (e.g., String) provides additional security

CPSC 233: Introduction to Java programming 35

James Tam

Important Terminology, Concepts, Methods

•toString()

•equals()

•pass by value

•pass by reference

•Wrapper classes

•Deep/shallow copy

•Static/class attributes/methods

•Instance attributes

•Static vs. final keywords

•Immutable vs. mutable

James Tam

After This Section You Should Now Know

•Two useful methods that should be implemented for almost

every class: toString and equals

•What is the difference between pass by value vs. pass by

reference

•The difference between references and objects

•Issues associated with assignment and comparison of objects vs.

references

•The difference between a deep vs. a shallow copy

•What is a static method and attribute, when is appropriate for

something to be static and when is it inappropriate (bad style)

•What is the difference between a mutable and an immutable

type

CPSC 233: Introduction to Java programming 36

James Tam

After This Section You Should Now Know (2)

•When should a mutable vs. immutable type be used and the

advantages from using each type

