
CPSC 233: Introduction to Java programming 1

James Tam

Introduction To Java Programming

You will learn about the process of

creating Java programs and constructs

for input, output, branching, looping, as

well some of the history behind Java’s

development.

James Tam

Java Vs. Java Script

Java (this is what you need to know for this course)
- A complete programming language developed by Sun

- Can be used to develop either web based or stand-alone software

- Many pre-created code libraries available

- For more complex and powerful programs

Java Script (not covered in this course)
- A small language that’s mostly used for web-based applications (run

through a web browser like Internet Explorer, Firefox, Safari, Chrome)

- Good for programming simple special effects for your web page e.g., roll-

overs

- e.g.,

http://pages.cpsc.ucalgary.ca/~tamj/2005/231P/assignments/assignment4/i

ndex.html

http://pages.cpsc.ucalgary.ca/~tamj/2005/231P/assignments/assignment4/index.html
http://pages.cpsc.ucalgary.ca/~tamj/2005/231P/assignments/assignment4/index.html

CPSC 233: Introduction to Java programming 2

James Tam

Java: Write Once, Run Anywhere

•Consequence of Java’s history

(coming later): platform-

independence

Mac user running Safari

Windows user running Internet Explorer

Web page stored on Unix server

Click on link to Applet

Byte code is downloaded

Virtual machine translates byte code to

native Mac code and the Applet is run

Byte code

(part of web

page)

James Tam

Java: Write Once, Run Anywhere

•Consequence of Java’s history

(coming later): platform-

independent

Mac user running Safari

Windows user running Internet Explorer

Web page stored on Unix server

Click on link to Applet

Byte code is downloaded

Virtual machine translates byte code to

native Windows code and the Applet is run

CPSC 233: Introduction to Java programming 3

James Tam

Java: Write Once, Run Anywhere (2)

•But Java can also create standard (non-web based) programs

Dungeon Master (Java version)
http://homepage.mac.com/aberfield/dmj/

Examples of mobile Java games: http://www.mobilegamesarena.net

Kung Fu Panda 2: THQ

James Tam

Java: Write Once, Run Anywhere (3)

•Java has been used by large and reputable companies to create

serious stand-alone applications.

•Example:
- Eclipse1: started as a programming environment created by IBM for

developing Java programs. The program Eclipse was itself written in Java.

1 For more information: http://www.eclipse.org/downloads/

http://homepage.mac.com/aberfield/dmj/
http://www.eclipse.org/downloads/

CPSC 233: Introduction to Java programming 4

James Tam

JT’s Note: IDE’s

•Even more so than Python there are graphical development

environments available for Java (e.g., Eclipse).

•Learning one or more these environments prior to embarking on

employment would be a valuable experience.

•However it is not recommended that you use them for this

course.
- You may have drastic problems configuring the environment.

- It’s easier programming without an IDE and then learning one later than

the opposite (not all development teams can/will use them).

- With the size of the programs you will see in this class it would be a good

learning experience to ‘work without a net’.

• Bottom line: if you have problems with the IDE then you will

likely be on your own.

James Tam

Compiled Programs With Different
Operating Systems

Windows
compiler

Executable (Windows)

UNIX
compiler

Executable (UNIX)

Mac OS
compiler

Executable (Mac)

Computer
program

CPSC 233: Introduction to Java programming 5

James Tam

A High Level View Of Translating/Executing Java
Programs

Java compiler

(javac)

Java program

Filename.java

Java

bytecode

(generic

binary)

Filename.class

Stage 1: Compilation

James Tam

A High Level View Of Translating/Executing Java
Programs (2)

Java interpreter

(java)
Java

bytecode

(generic

binary)

Filename.class

Machine language

instruction (UNIX)

Machine language

instruction (Windows)

Machine language

instruction (Apple)

Stage 2: Interpreting and executing the byte code

CPSC 233: Introduction to Java programming 6

James Tam

Which Java?

• Java 1.6 JDK (Java Development Kit), Standard Edition

includes:
- JDK (Java development kit) – for developing Java software (creating

Java programs.

- JRE (Java Runtime environment) – only good for running pre-created

Java programs.
•Java Plug-in – a special version of the JRE designed to run through web
browsers.

• For consistency/fairness: Your graded work will be based on

the version of Java installed (don’t use versions past 1.6).
- Only run your program using a remote connection program (e.g., SSH to

a CPSC Linux computer) or test your code periodically on the network to

make sure it’s compatible.

- It’s your responsibility to ensure compatibility.

- If the program doesn’t work on the Lunix computers in the lab then it will

only receive partial marks (at most).

 http://java.sun.com/javase/downloads/index.jsp

James Tam

Location Of Online Examples For This Section

•Course website:
- www.cpsc.ucalgary.ca/~tamj/233/examples/intro

•UNIX directory:
- /home/233/examples/intro

CPSC 233: Introduction to Java programming 7

James Tam

Smallest Compilable And Executable Java Program

The name of the online example is: Smallest.java (Important note:

file name matches the word after the keyword ‘class’).

public class Smallest

{

 public static void main (String[] args)

 {

 }

}

James Tam

Creating, Compiling And Running Java Programs
On The Computer Science Network

javac

Java compiler

Java byte code

filename.class

(UNIX file) To compile the program at the

command line type "javac

filename.java"

To run the interpreter, at

the command line type

"java filename"

java

Java Interpreter

Type it in with the text editor of your choice

filename.java

(Unix file)

Java program

CPSC 233: Introduction to Java programming 8

James Tam

Compiling The Smallest Java Program

public class Smallest

{

 public static void main (String[] args)

 {

 }

}

Smallest.java

javac

(Java byte code)

10000100000001000
00100100000001001

 : :

Smallest.class

Type “javac

Smallest.java”

James Tam

Running The Smallest Java Program

(Java byte code)

10000100000001000
00100100000001001

 : :

Smallest.class

java

Type “java Smallest” (Platform/Operating specific binary

10100111000001000
00100111001111001

 : :

CPSC 233: Introduction to Java programming 9

James Tam

Running The Java Compiler At Home

•After installing Java you will need to indicate to the operating

system where the java compiler has been installed (‘setting the

path’).

•For details of how to set your path variable for your particular

operating system try the Sun or Java website.

•Example of how to set the path in Windows:
- http://java.sun.com/j2se/1.4.2/install-windows.html (see step 5 on the web

link)

James Tam

Documentation / Comments

Multi-line documentation

/* Start of documentation

*/ End of documentation

Documentation for a single line

//Everything until the end of the line is a comment

http://java.sun.com/j2se/1.4.2/install-windows.html
http://java.sun.com/j2se/1.4.2/install-windows.html
http://java.sun.com/j2se/1.4.2/install-windows.html

CPSC 233: Introduction to Java programming 10

James Tam

Review: What Should You Document

•Program (or that portion of the program) author

•What does the program as a while do e.g., tax program.

•What are the specific features of the program e.g., it calculates

personal or small business tax.

•What are it’s limitations e.g., it only follows Canadian tax laws

and cannot be used in the US. In Canada it doesn’t calculate

taxes for organizations with yearly gross earnings over $1

billion.

•What is the version of the program
- If you don’t use numbers for the different versions of your program then

consider using dates (tie versions with program features).

James Tam

Important Note

•Each Java instruction must be followed by a semi-colon!

General format

Instruction1;

Instruction2;

Instruction3;

 : :

Examples

int num = 0;

System.out.println(num);

 : :

CPSC 233: Introduction to Java programming 11

James Tam

Java Output

•Format:
System.out.print(<string or variable name one> + <string or variable name
two>..);
OR
System.out.println(<string or variable name one> + <string or variable
name two>..);

•Examples (online program called “OutputExample1.java”)

public class OutputExample1

{

 public static void main (String [] args)

 {

 int num = 123; // More on this shortly
 System.out.println("Good-night gracie!");
 System.out.print(num);
 System.out.println("num="+num);
}

}

James Tam

Output : Some Escape Sequences For Formatting

Escape sequence Description

\t Horizontal tab

\n New line

\" Double quote

\\ Backslash

CPSC 233: Introduction to Java programming 12

James Tam

Variables

•Unlike Python variables must be declared before they can be

used.

•Variable declaration:
- Creates a variable in memory.

- Specify the name of the variable as well as the type of information that it

will store.

- E.g. int num;

- Although requiring variables to be explicitly declared appears to be an

unnecessary chore it can actually be useful for minimizing insidious logic

errors.

•Using variables
- Only after a variable has been declared can it be used.

- E.g., num = 12;

James Tam

Using Variables: A Contrast

Python

•Variables do not need to be declared

before being used.

•Easy to start programming.

•Easy to make logic errors!

income = 25000

if (winLottery):

 incom = 1000000

Java

•Syntactically variables must always

be declared prior to use.

•A little more work to get started.

•Some logic errors may be prevented.

int income = 25000;

if (winLottery)

 incom = 1000000;

Logic error: can be

tricky to catch in a

real (large and

complex) program

Syntax error:

compiler points out

the source of the

problem

CPSC 233: Introduction to Java programming 13

James Tam

Declaring Variables: Syntax

•Format:
<type of information> <name of variable>;

•Example:
char myFirstInitial;

•Variables can be initialized (set to a starting value) as they’re

declared:
char myFirstInitial = ‘j’;

int age = 30;

James Tam

Some Built-In Types Of Variables In Java

Type Description

byte 8 bit signed integer

short 16 but signed integer

int 32 bit signed integer

long 64 bit signed integer

float 32 bit signed real number (rare)

double 64 bit signed real number (compiler default)

char 16 bit Unicode character (ASCII values and

beyond)

boolean 1 bit true or false value

String A sequence of characters between double

quotes ("")

CPSC 233: Introduction to Java programming 14

James Tam

Location Of Variable Declarations

public class <name of class>

{

 public static void main (String[] args)

 {

 // Local variable declarations occur here

 << Program statements >>

 : :

 }

}

James Tam

Style Hint: Initializing Variables

•Always initialize your variables prior to using them!
- Do this whether it is syntactically required or not.

•Example how not to approach (under some circumstances not a

syntax error):

public class OutputExample1

{

 public static void main (String [] args)

 {

 int num;

 System.out.print(num);

 }

}

OutputExample1.java:7: error: variable

num might not have been initialized

 System.out.print(num);
 ̂

CPSC 233: Introduction to Java programming 15

James Tam

Formatting Output

•It’s somewhat similar to Python.

•The field width and places of precision (float point) can be

specified.

•Format:
print/println("%<field width>d", price); // Integer

print/println("%<field width>s", price); // String

print/println("%<field width>.<precision>f", price); // Floating point

•A positive field width will result in leading spaces (right

justify).

•A negative field width will result in trailing spaces (left justify).

James Tam

Formatting Output (2)

•Name of the online example: FormatttingOutput.java

public class FormattingExample

{

 public static void main(String [] args)

 {

 String str = "123";

 int num = 123;

 double price = 1.999;

 System.out.printf("%-4s", str);

 System.out.printf("%6d", num);

 System.out.printf("%6.2f", price);

 }

}

CPSC 233: Introduction to Java programming 16

James Tam

Java Constants (“Final”)

Reminder: constants are like variables in that they have a name

and store a certain type of information but unlike variables they

CANNOT change. (Unlike Python this is syntactically

enforced…hurrah!).

Format:
 final <constant type> <CONSTANT NAME> = <value>;

Example:
 final int SIZE = 100;

James Tam

Location Of Constant Declarations

public class <name of class>

{

 public static void main (String[] args)

 {

 // Local constant declarations occur here (more later)

 // Local variable declarations

 < Program statements >>

 : :

 }

}

CPSC 233: Introduction to Java programming 17

James Tam

Variable Naming Conventions In Java

• Compiler requirements
- Can’t be a keyword nor can the names of the special constants: true,

false or null be used

- Can be any combination of letters, numbers, underscore or dollar sign

(first character must be a letter or underscore)

• Common stylistic conventions
- The name should describe the purpose of the variable

- Avoid using the dollar sign

- With single word variable names, all characters are lower case
•e.g., double grades;

- Multiple words are separated by capitalizing the first letter of each word

except for the first word
•e.g., String firstName = “James”;

James Tam

Java Keywords

abstract boolean break byte case catch char

class const continue default do double else

extends final finally float for goto if

implements import instanceof int interface long native

new package private protected public return short

static super switch synchronized this throw throws

transient try void volatile while

CPSC 233: Introduction to Java programming 18

James Tam

Common Java Operators / Operator Precedence

Precedence

level

Operator Description Associativity

1 expression++

expression--

Post-increment

Post-decrement

Right to left

2 ++expression

--expression

+

-

!

~

(type)

Pre-increment

Pre-decrement

Unary plus

Unary minus

Logical negation

Bitwise complement

Cast

Right to left

James Tam

Common Java Operators / Operator Precedence

Precedence

level

Operator Description Associativity

3 *

/

%

Multiplication

Division

Remainder/modulus

Left to right

4 +

-

Addition or String

concatenation

Subtraction

Left to right

5 <<

>>

Left bitwise shift

Right bitwise shift

Left to right

CPSC 233: Introduction to Java programming 19

James Tam

Common Java Operators / Operator Precedence

Precedence

level

Operator Description Associativity

6 <

<=

>

>=

Less than

Less than, equal to

Greater than

Greater than, equal to

Left to right

7 = =

!=

Equal to

Not equal to

Left to right

8 & Bitwise AND Left to right

9 ^ Bitwise exclusive OR Left to right

James Tam

Common Java Operators / Operator Precedence

Precedence

level

Operator Description Associativity

10 | Bitwise OR Left to right

11 && Logical AND Left to right

12 || Logical OR Left to right

CPSC 233: Introduction to Java programming 20

James Tam

Common Java Operators / Operator Precedence

Precedence

level

Operator Description Associativity

13 =

+=

-=

*=

/=

%=

&=

^=

|=

<<=

>>=

Assignment

Add, assignment

Subtract, assignment

Multiply, assignment

Division, assignment

Remainder, assignment

Bitwise AND, assignment

Bitwise XOR, assignment

Bitwise OR, assignment

Left shift, assignment

Right shift, assignment

Right to left

James Tam

Post/Pre Operators

The name of the online example is: Order1.java

public class Order1

{

 public static void main (String [] args)

 {

 int num = 5;

 System.out.println(num);

 num++;

 System.out.println(num);

 ++num;

 System.out.println(num);

 System.out.println(++num);

 System.out.println(num++);

 }

}

CPSC 233: Introduction to Java programming 21

James Tam

Post/Pre Operators (2)

The name of the online example is: Order2.java

public class Order2

{

 public static void main (String [] args)

 {

 int num1;

 int num2;

 num1 = 5;

 num2 = ++num1 * num1++;

 System.out.println("num1=" + num1);

 System.out.println("num2=" + num2);

 }

}

James Tam

Unary Operator/Order/Associativity

The name of the online example: Unary_Order3.java

public class Unary_Order3.java

{

 public static void main (String [] args)

 {

 int num = 5;

 System.out.println(num);

 num = num * -num;

 System.out.println(num);

 }

}

CPSC 233: Introduction to Java programming 22

James Tam

Casting: Converting Between Types

•Casting: the ability to convert between types.
- Of course the conversion between types must be logical otherwise an error

will result.

•In Java unlike Python the conversion isn’t just limited to a

limited number of functions.
- Consequently Python doesn’t have true ‘casting’ ability.

•Format:
<Variable name> = (type to convert to) <Variable name>;

James Tam

Casting: Structure And Examples

The name of the online example: Casting.java

public class Casting {

 public static void main(String [] args) {

 int num1;

 double num2;

 String str1;

 num2 = 1.9;

 str1 = "123";

 num1 = (int) num2; // Cast needed to explicitly convert

 System.out.println(num1 + " " + num2);

 num2 = num1; // Cast not needed: going from more to less

 System.out.println(num1 + " " + num2);

 }

}

CPSC 233: Introduction to Java programming 23

James Tam

Accessing Pre-Created Java Libraries

•It’s accomplished by placing an ‘import’ of the appropriate

library at the top of your program.

•Syntax:

import <Full library name>;

•Example:
import java.util.Scanner;

James Tam

Getting Text Input

•You can use the pre-written methods (functions) in the Scanner

class.

•General structure:

import java.util.Scanner;

main (String [] args)

{

 Scanner <name of scanner> = new Scanner (System.in);

 <variable> = <name of scanner> .<method> ();

}

CPSC 233: Introduction to Java programming 24

James Tam

Getting Text Input (2)

The name of the online example: MyInput.java

import java.util.Scanner;

public class MyInput
{
 public static void main (String [] args)
 {
 String str1;
 int num1;
 Scanner in = new Scanner (System.in);
 System.out.print ("Type in an integer: ");
 num1 = in.nextInt ();
 in.nextLine ();
 System.out.print ("Type in a line: ");
 str1 = in.nextLine ();
 System.out.println ("num1:" +num1 +"\t str1:" + str1);
 }
}

James Tam

Useful Methods Of Class Scanner1

•nextInt ()

•nextLong ()

•nextFloat ()

•nextDouble ()

•nextLine ();

1 Online documentation: http://java.sun.com/javase/6/docs/api/

http://java.sun.com/javase/6/docs/api/

CPSC 233: Introduction to Java programming 25

James Tam

Reading A Single Character

•Text menu driven programs may require this capability.

•Example:
GAME OPTIONS

(a)dd a new player

(l)oad a saved game

(s)ave game

(q)uit game

•There’s different ways of handling this problem but one

approach is to extract the first character from the string.

•Partial example:
String s = "boo";

System.out.println(s.charAt(0));

James Tam

Reading A Single Character

•Name of the (more complete example): MyInputChar.java

import java.util.Scanner;

public class MyInputChar

{

 public static void main (String [] args)

 {

 final int FIRST = 0;

 String selection;

 Scanner in = new Scanner (System.in);

 System.out.println("GAME OPTIONS");

 System.out.println("(a)dd a new player");

 System.out.println("(l)oad a saved game");

 System.out.println("(s)ave game");

 System.out.println("(q)uit game");

 System.out.print("Enter your selection: ");

CPSC 233: Introduction to Java programming 26

James Tam

Reading A Single Character (2)

 selection = in.nextLine ();

 System.out.println ("Selection: " + selection.charAt(FIRST));

 }

}

James Tam

Decision Making In Java

•Java decision making constructs

- if

- if, else

- if, else-if

- switch

CPSC 233: Introduction to Java programming 27

James Tam

Decision Making: Logical Operators

Logical Operation Python Java

AND and &&

OR or ||

NOT not !

James Tam

Decision Making: If

Format:

 if (Boolean Expression)

 Body

Example:

 if (x != y)

 System.out.println("X and Y are not equal");

 if ((x > 0) && (y > 0))

 {

 System.out.println("X and Y are positive");

 }

• Indenting the body of

the branch is an

important stylistic

requirement of Java

but unlike Python it is

not enforced by the

syntax of the

language.

• What distinguishes the

body is either:

1.A semi colon (single

statement branch)

2.Braces (a body that

consists of single or

multiple statements)

CPSC 233: Introduction to Java programming 28

James Tam

Decision Making: If, Else

Format:

 if (Boolean expression)

 Body of if

 else

 Body of else

Example:

 if (x < 0)

 System.out.println("X is negative");

 else

 System.out.println("X is non-negative");

James Tam

If, Else-If

Format:

 if (Boolean expression)

 Body of if

 else if (Boolean expression)

 Body of first else-if

 : : :

 else if (Boolean expression)

 Body of last else-if

 else

 Body of else

CPSC 233: Introduction to Java programming 29

James Tam

If, Else-If (2)

Example:

 if (gpa == 4)

 {

 System.out.println("A");

 }

 else if (gpa == 3)

 {

 System.out.println("B");

 }

 else if (gpa == 2)

 {

 System.out.println("C");

 }

James Tam

If, Else-If (2)

 else if (gpa == 1)

 {

 System.out.println("D");

 }

 else

 {

 System.out.println("Invalid gpa");

 }

CPSC 233: Introduction to Java programming 30

James Tam

Alternative To Multiple Else-If’s: Switch

Format (character-based switch):
switch (character variable name)

{

 case '<character value>':

 Body

 break;

 case '<character value>':

 Body

 break;

 :

 default:

 Body

}

1 The type of variable in the brackets can be a byte, char, short, int or long

Important! The break is

mandatory to separate

Boolean expressions

(must be used in all but

the last)

James Tam

Alternative To Multiple Else-If’s: Switch (2)

Format (integer based switch):
switch (integer variable name)

{

 case <integer value>:

 Body

 break;

 case <integer value>:

 Body

 break;

 :

 default:

 Body

}

1 The type of variable in the brackets can be a byte, char, short, int or long

CPSC 233: Introduction to Java programming 31

James Tam

Switch: When To Use/When Not To Use

•Benefit (when to use):
- It may produce simpler code than using an if, else-if (e.g., if there are

multiple compound conditions)

James Tam

Switch: When To Use/When Not To Use (2)

•Name of the online example: SwitchExample.java (When to

use)

import java.util.Scanner;

public class SwitchExample

{

 public static void main (String [] args)

 {

 final int FIRST = 0;

 String line;

 char letter;

 int gpa;

 Scanner in = new Scanner (System.in);

 System.out.print("Enter letter grade: ");

CPSC 233: Introduction to Java programming 32

James Tam

Switch: When To Use/When Not To Use (3)

 line = in.nextLine ();

 letter = line.charAt(FIRST);

 switch (letter)

 {

 case 'A':

 case 'a':

 gpa = 4;

 break;

 case 'B':

 case 'b':

 gpa = 3;

 break;

 case 'C':

 case 'c':

 gpa = 2;

 break;

James Tam

Switch: When To Use/When Not To Use (4)

 case 'D':

 case 'd':

 gpa = 1;

 break;

 case 'F':

 case 'f':

 gpa = 0;

 break;

 default:

 gpa = -1;

 }

 System.out.println("Letter grade: " + letter);

 System.out.println("Grade point: " + gpa);

 }

}

CPSC 233: Introduction to Java programming 33

James Tam

Switch: When To Use/When Not To Use (5)

•When a switch can’t be used:
- For data types other than characters or integers (Java 1.6 and earlier)

- Boolean expressions that aren’t mutually exclusive:
•As shown a switch can replace an ‘if, else-if’ construct

•A switch cannot replace a series of ‘if’ branches).

- Example when not to use a switch:
if (x > 0)

 System.out.print(“X coordinate right of the origin”);

If (y > 0)

 System.out.print(“Y coordinate above the origin”);

- Example of when not to use a switch (Java 1.6):
String name = in.readLine()

switch (name)

{

}

James Tam

Loops

Python loops
• Pre-test loops: for, while

Java Pre-test loops
• For

• While

Java Post-test loop
• Do-while

CPSC 233: Introduction to Java programming 34

James Tam

While Loops

Format:
while (Boolean expression)

 Body

Example:

 int i = 1;

 while (i <= 1000000)

 {

 System.out.println(“How much do I love thee?”);

 System.out.println(“Let me count the ways: “, + i);

 i = i + 1;

 }

James Tam

For Loops

Format:

 for (initialization; Boolean expression; update control)

 Body

Example:

 for (i = 1; i <= 1000000; i++)

 {

 System.out.println(“How much do I love thee?”);

 System.out.println(“Let me count the ways: ” + i);

 }

CPSC 233: Introduction to Java programming 35

James Tam

Post-Test Loop: Do-While

•Recall: Post-test loops evaluate the Boolean expression after the

body of the loop has executed.

•This means that post test loops will execute one or more times.

•Pre-test loops generally execute zero or more times.

James Tam

Do-While Loops

Format:

 do

 Body

 while (Boolean expression);

Example:

 char ch = 'A';

 do

 {

 System.out.println(ch);

 ch++;

 }

 while (ch <= 'K');

CPSC 233: Introduction to Java programming 36

James Tam

Common Mistake: Branches/Loops

•Forgetting that single statement bodies are specified by the first

semi-colon.

•(Partial) examples:
while (i < 10)

 System.out.println(i);

 i = i + 1;

while (i < 10);

{

 System.out.println(i);

 i = i + 1;

}

James Tam

Many Pre-Created Classes Have Been Created

•Rule of thumb of real life: Before writing new program code to

implement the features of your program you should check to see

if a class has already been written with the features that you

need.

•Note: for some assignments you may have to implement all

features yourself rather than use pre-written code.

•The Java API is Sun Microsystems's collection of pre-built Java

classes:
- http://java.sun.com/javase/6/docs/api/

http://java.sun.com/javase/6/docs/api/

CPSC 233: Introduction to Java programming 37

James Tam

Extras For Assignments

•Command arguments

•Getting input from files

James Tam

Command Line Arguments

•Sometimes programs can receive all input information as the

program is run.

•Examples include operating system commands:
“ls –a –l” (UNIX)

“notepad.exe c:\temp\testfile.txt” (DOS/Windows: assuming the current

directory is where Notepad resides)

Name of the

program

ls

notepad.exe

Inputs given to the program

(command line arguments)

-a –l

c:\temp\testfile.txt

CPSC 233: Introduction to Java programming 38

James Tam

Command Line Arguments In Java

•Name of the online example: CommandLineInputs.java

public class CommandLineInputs

{

 public static void main(String [] args)

 {

 if (args.length > 0)

 {

 System.out.print("First input after file name: ");

 System.out.println(args[0]);

 }

 for (int i = 0; i < args.length; i++)

 {

 System.out.println(args[i]);

 }

 }

}

James Tam

Getting File Input, Version 1 (Just Include In Your
Assignment)

•Name of the online example: FileInput1.java

import java.io.*;

public class FileInput1 {

 public static void main (String [] args) throws IOException {

 FileReader fr = null;

 BufferedReader br = null;

 String filename = "input.txt";

 String lineFromFile = null;

 fr = new FileReader(filename);

 br = new BufferedReader(fr);

 lineFromFile = br.readLine(); // Reads line of input

 while(lineFromFile != null) { /* Checks for EOF */

 System.out.println(lineFromFile);

 lineFromFile = br.readLine();

 }

 }

}

CPSC 233: Introduction to Java programming 39

James Tam

Getting File Input, Version 1 (Just Include In Your
Assignment)

•Name of the online example: FileInput1.java

import java.io.*;

public class FileInput1 {

 public static void main (String [] args) throws IOException {

 FileReader fr = null;

 BufferedReader br = null;

 String filename = "input.txt";

 String lineFromFile = null;

 fr = new FileReader(filename);

 br = new BufferedReader(fr);

 lineFromFile = br.readLine(); // Reads line of input

 while(lineFromFile != null) { /* Checks for EOF */

 System.out.println(lineFromFile);

 lineFromFile = br.readLine();

 }

 }

}

James Tam

Getting File Input, Version 2

•Name of the online example: FileInput2.java (converts from String

to other types of data).

import java.io.*;

public class FileInput2

{

 public static void main (String [] args) throws Exception

 {

 FileReader fr = null;

 BufferedReader br = null;

 String filename = "input2.txt";

 String lineFromFile = null;

 int num1 = 0;

 double num2 = 0;

 fr = new FileReader(filename);

 br = new BufferedReader(fr);

 lineFromFile = br.readLine();

CPSC 233: Introduction to Java programming 40

James Tam

Getting File Input, Version 2 (2)

 // Converts from String to integer (make sure String is really all integer)

 num1 = Integer.parseInt(lineFromFile);

 num1 = num1 * 2;

 lineFromFile = br.readLine();

 // Converts from String to double (make sure String is really all real)

 num2 = Double.parseDouble(lineFromFile);

 num2 = num2 + 1;

 lineFromFile = br.readLine();

 System.out.println(num1);

 System.out.println(num2);

 System.out.println(lineFromFile);

 }

}

James Tam

After This Section You Should Now Know

•The basic structure required in creating a simple Java program

as well as how to compile and run programs

•How to document a Java program

•How to perform text based input and output in Java

•The declaration of constants and variables

•Formatting output with the field width, precision and escape

codes

•Converting between types using the casting operator

•What are the common Java operators and how they work

•The structure and syntax of decision making and looping

constructs

