
4/3/2014

Linked lists 1

Linked Lists

A dynamically resizable efficient list
implementation

James Tam

Tip For Success: Reminder

• Look through the examples and notes before class.

• This is especially important for this section because the
execution of this programs will not be in sequential order.

• Instead execution will appear to ‘jump around’ so it will be
harder to understand the concepts and follow the examples
illustrating those concepts if you don’t do a little preparatory
work.

• Also the program code is more complex than most other
examples.

• For these reasons tracing the code in this section is more
challenging

4/3/2014

Linked lists 2

James Tam

Lists

• Data that only includes one attribute or dimension

• Example data with one-dimension
–Tracking grades for a class

–Each cell contains the grade for a student i.e., grades[i]

–There is one dimension that specifies which student’s grades are being
accessed

One dimension (which student)

James Tam

Lists (2)

• Example data with two-dimensions (just for reference)
– Again there is one dimension that specifies which student’s grades are

being accessed

– The other dimension can be used to specify the lecture section

Student

Lecture

section
 First

 student

 Second

 student

 Third

 student
 …

 L01

 L02

 L03

 L04

 L05

 :

 L0N

4/3/2014

Linked lists 3

James Tam

Array Implementation Of A List: Advantage

• Ease of use: arrays are a simple structure

James Tam

Array Implementation Of A List: Disadvantage

• Some array implementations cannot be automatically resized
–E.g.,

int [] array = new int[10];

• Adding more elements requires the creation of a new array
and the copying of existing data into the new array
–E.g.

int [] bigger = new int[20];

int i; = 0;

while (i < array.length)

{

 bigger[i] = array[i];

 i++;

}

4/3/2014

Linked lists 4

James Tam

Array Implementation Of A List: Disadvantage (2)

• Inserting new elements to an ordered lists can be inefficient:
requires ‘shifting’ of elements

123

125

135

155

161

166

167

167

169

177

178

165

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

JT: If the size of each element is large
(e.g., array of objects and not an
array of references) then program
speed can be degraded

James Tam

Array Implementation Of A List: Disadvantage (3)

• Similarly removing elements from an ordered lists can be
inefficient: requires ‘shifting’ of elements

123

125

135

155

161

166

167

167

Remove

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

4/3/2014

Linked lists 5

James Tam

Linked Lists

• An alternate implementation of a list.
–As the name implies, unlike an array the linked list has explicit

connections between elements

–This connection is the only thing that holds the list together.

•Removing a connection to an element makes the element inaccessible.

•Adding a connection to an element makes the element a part of the list.

• The program code is more complex but some operations are
more efficient (e.g., additions and deletions don’t require
shifting of elements).
–Just change some connections.

• Also linked lists tend to be more memory efficient that arrays.
–The typical approach with an array implementation is to make the array

larger than needed. (Unused elements are allocated in memory and the
space is wasted).

–With a linked list implementation, elements only take up space in
memory as they’re needed.

Start End

James Tam

• Insertions and removal of elements can be faster and more
efficient because no shifting is required.

• Elements need only be linked into the proper place
(insertions) or bypassed (deletions)

Linked Lists

4/3/2014

Linked lists 6

James Tam

• Find the insertion point

Insertion

Alice Charlie

Bob

Bob goes between

Alice and Charlie

James Tam

Insertion (2)

• Change the connections between list elements so the new
element is inserted at the appropriate place in the list.

Alice Charlie

Bob

4/3/2014

Linked lists 7

James Tam

• Find location of the element to be deleted

Deletions

Alice
Charlie Bob

Remove this element

James Tam

Deletions (2)

• Change the connections so that the element to be deleted is
no longer a part of the list (by passed).

Alice Charlie Bob

Remove this element

4/3/2014

Linked lists 8

James Tam

List Elements: Nodes

Freight “data”

Connector

Node

Data (e.g., Book)

Pointer/reference

(connector)

James Tam

Linked Lists: Important Details

• Unlike arrays, many details must be manually and explicitly
specified by the programmer: start of the list, connections
between elements, end of the list.

• Caution! Take care to ensure the reference to the first element
is never lost.
–Otherwise the entire list is lost

Data Ptr Data Ptr Data Ptr

Linked

List

Head

1 The approximate equivalent of a pointer (“ptr”) in Java is a reference.

(Marks the start)

4/3/2014

Linked lists 9

James Tam

More On Connections: The Next Pointer

• A special marker is needed for the end of the list.

• The ‘next’ attribute of a node will either:
1. Contain a reference/address of the next node in the list.

2. Contain a null value.

• (That means once there is a reference to the start of the list
(“head”), the next pointer of each element can be used to
traverse the list).

Data Next

Data Next Data Next ...

(Marks the end)

James Tam

Location Of The Full Example

• Due to the complexity of this program it will be decomposed
into sections :
–List operation e.g., adding elements, removing elements

• The sections may have sub-sections
–Sub-cases of list operations e.g., removing first element, removing any

element except for the first etc.

• Full example:
– /home/233/examples/linkedLists

4/3/2014

Linked lists 10

James Tam

Driver

Outline Of The Example

Book
• The ‘freight’, the data stored in

each list element

• In the example books only have
a title attribute

BookNode
• The ‘train cars’

• In the example a node has two attributes:

• A book (data/’freight’)

• Next reference

Manager

• Implements all the list operations:
insertions, removals, display of
elements etc.

James Tam

Defining The Data: A Book

public class Book
{
 private String name;
 public Book(String aName) { ... }
 public String getName() { ... }
 public void setName(String aName) { ... }
 public String toString() { ... }
}

4/3/2014

Linked lists 11

James Tam

Example: Defining A Node

public class BookNode {

 private Book data;

 private BookNode next;

}

Information stored by each element

Connects list elements =

null or address of next

element

James Tam

Class BookNode

public class BookNode
{
 private Book data;
 private BookNode next;

 public BookNode()
 {
 data = null;
 next = null;
 }

 public BookNode(Book someData, BookNode nextNode)
 {
 setData(someData);
 setNext(nextNode);
 }

4/3/2014

Linked lists 12

James Tam

Class BookNode (2)

 public Book getData() { return(data); }

 public BookNode getNext() { return(next); }

 public void setData(Book someData) { data = someData; }

 public void setNext(BookNode nextNode) { next = nextNode; }

 public String toString() {
 return(data.toString());
 }
}

 // Book.toString()
 public String toString()
 {
 String temp;
 if (name != null)
 temp = "Book name: " + name;
 else
 temp = "Book name: No-name";
 return(temp);
 }

James Tam

Creating A New Manager (And New List)

public class Driver
{
 public static void main (String [] args)
 {
 Manager aManager = new Manager(); // New manager
 ...
public class Manager
{
 private BookNode head; // Recall: marks start of list
 public Manager () {
 head = null; // New (empty) list
 }

Case 1:

Empty list

head

null

Case 2: Non-

empty list

head

First node

4/3/2014

Linked lists 13

James Tam

A More Detailed Outline Of Class Manager

public class Manager {

 public void add() {
 // Add new node to end of the list
 }

 public void display() {
 // Iterative: in-order display
 }

 public void displayRecursive() {
 // Recursive: in-order display
 }

 public void eraseList() { ... }

 public void remove() {
 // Search and remove node
 }

James Tam

List Operations: Linked Lists (Display)

• A temporary pointer/reference is used when successively
displaying the elements of the list.

• When the temporary pointer is null, the end of the list has
been reached.

• Graphical illustration of the algorithm:

• Pseudo code algorithm:
while (temp != null)
 display node
 temp = address of next node

Data Ptr Data Ptr Data Ptr

Temp Temp
Temp

Temp

Head

4/3/2014

Linked lists 14

James Tam

First List Operation: Display

• Case 1: Empty List
 // Driver
 Manager listManager = new Manager();
 listManager.display();

 // Manager

 public void display()

 {

 int count = 1;

 BookNode temp = head;

 System.out.println("DISPLAYING LIST");

 for (int i = 0; i < LIST_HEADER.length(); i++)

 System.out.print("-");

 System.out.println();

 if (temp == null)

 System.out.println("\tList is empty: nothing to display");

 private String LIST_HEADER =
"DISPLAYING LIST";

Displaying The List: Iterative Implementation
(Empty)

head

null

head

4/3/2014

Linked lists 15

James Tam

First List Operation: Display (2)

• Case 2: Non-empty list
// Driver
listManager.add();
listManager.add();
listManager.add();
listManager.display();

James Tam

Manager.Display()

 public void display()
 {
 int count = 1;
 BookNode temp = head;
 System.out.println("DISPLAYING LIST");
 for (int i = 0; i < LIST_HEADER.length(); i++)
 System.out.print("-");
 System.out.println();
 if (temp == null)
 System.out.println("\tList is empty: nothing to display");
 while (temp != null)
 {
 System.out.println("\t#" + count + ": " + temp);
 temp = temp.getNext();
 count = count + 1;
 }
 System.out.println();
 }

4/3/2014

Linked lists 16

Displaying The List: Iterative Implementation
(Non-Empty)

head

BORED OF

THE RINGS

SILENT HILL:

DYING INSIDE

PEACE AND

WAR

Traversing The List: Display

• Study guide:
• Steps (traversing the list to display the data portion of each node onscreen)

1. Start by initializing a temporary reference to the beginning of the list.

2. If the reference is ‘null’ then display a message onscreen indicating
that there are no nodes to display and stop otherwise proceed to next
step.

3. While the temporary reference is not null:

a) Process the node (e.g., display the data onscreen).

b) Move to the next node by following the current node's next
reference (set the temp reference to refer to the next node).

4/3/2014

Linked lists 17

James Tam

Second List Operation: Destroying List

 public void eraseList ()
 {

 head = null;

 }

•Caution! Works in Java because of
automatic garbage collection.

•Be aware that you would have to
manually free up the memory for each
node prior to this step with other
languages.

James Tam

List Operations: Linked Lists (Search)

• The algorithm is similar to displaying list elements except that
there must be an additional check to see if a match has
occurred.

• Conditions that may stop the search:

Temp

Data Ptr Data Ptr Data Ptr

Head

1. Temp = null (end)?

2. Data match?

4/3/2014

Linked lists 18

James Tam

List Operations: Linked Lists (Search: 2)

• Pseudo code algorithm:
Temp refers to beginning of the list

If (temp is referring to empty list)

 display error message “Empty list cannot be searched”

While (not end of list AND match not found)

 if (match found)

 stop search or do something with the match

 else

 temp refers to next element

James Tam

List Operations That Change List Membership

• These two operations (add/remove) change the number of
elements in a list.

• The first step is to find the point in the list where the node is to
be added or deleted (typically requires a search even if the
search is just for the end of the list).

• Once the point in the list has been found, changing list
membership is merely a reassignment of pointers/references.
–Again: unlike the case with arrays, no shifting is needed.

4/3/2014

Linked lists 19

James Tam

List Operations: Linked Lists (Insertion)

• Graphical illustration of the algorithm:

NULL

LIST

NEW

ELEMENT

Temp

James Tam

List Operations: Linked Lists (Insertion: 2)

• Graphical illustration of the algorithm:

NULL

LIST

NEW

ELEMENT

Temp

4/3/2014

Linked lists 20

James Tam

List Operations: Linked Lists (Insertion: 3)

• Graphical illustration of the algorithm:

NULL

LIST

NEW

ELEMENT

Temp

James Tam

List Operations: Linked Lists (Insertion: 4)

• Pseudo code algorithm (requires a search to be performed to
find the insertion point even if the insertion occurs at the end
of the list).

• # Search: use two references (one eventually points to the match

• # while the other points to the node immediately prior).

While (not end of list AND match not found)

 if (match found)

 stop search or do something with the match

 else

 temp refers to next element

• # Insert

Node to be inserted refers to node after insertion point

Node at insertion point refers to the node to be inserted

4/3/2014

Linked lists 21

James Tam

Third List Operation: Add/Insert At End

// Driver
listManager.add(); // Empty list at this point
listManager.add();
listManager.add();

James Tam

Manager.Add()

public void add()
{
 String title;
 Book newBook;
 BookNode newNode;

 System.out.println("Adding a new book");
 System.out.print("\tBook title: ");
 title = in.nextLine();
 newBook = new Book(title);
 newNode = new BookNode(newBook,null);

 // Case 1: List empty: new node becomes first node
 if (head == null)
 {
 head = newNode;
 }

4/3/2014

Linked lists 22

James Tam

Manager.Add() : 2

 // Case 2: Node not empty, find insertion point (end of list)
 else
 {
 BookNode current = head;
 BookNode previous = null;
 while (current != null)
 {
 previous = current;
 current = current.getNext();
 }
 previous.setNext(newNode);
 // Adds node to end: since a node’s next field is already
 // set to null at creation nothing else need be done.
 }
 }

James Tam

Adding A Node To The End Of The List: Empty List

head

null
BORED OF

THE RINGS

newNode

4/3/2014

Linked lists 23

James Tam

Adding A Node To The End Of The List: Non-Empty
List

head

null

newNode

BORED OF

THE RINGS

SILENT HILL:

DYING INSIDE

PEACE AND

WAR

James Tam

List Operations: Linked Lists (Removing Elements)

• Graphical illustration of the algorithm

• (Note that the search algorithm must first be used to find the
location of the node to be removed)
–Current: marks the node to be removed

–Previous: marks the node prior to the node to be removed

NULL

LIST Remove

Current Previous

4/3/2014

Linked lists 24

James Tam

List Operations: Linked Lists (Removing
Elements: 2)

• Graphical illustration of the algorithm

NULL

LIST Remove

Current Previous

James Tam

List Operations: Linked Lists (Removing
Elements: 2)

• Graphical illustration of the algorithm

NULL

LIST Remove

Current Previous

Node to be removed has been

bypassed (effectively deleted from the

list)

4/3/2014

Linked lists 25

James Tam

List Operations: Linked Lists (Removing
Elements: 3)

• The algorithm should work in the removal of any node
–First node

–Last node

Head Head

NULL

LIST Remove

NULL

LIST Remove

Current Previous

James Tam

List Operations: Linked Lists (Removing
Elements: 4)

• The search algorithm will find the node to be deleted and mark
it with a reference

• The node prior to the node to be deleted must also be marked.

• Pseudo code algorithm (removal)
Previous node refers to the node referred by current node (by
pass the node to be deleted)

4/3/2014

Linked lists 26

James Tam

Fourth List Operation: Remove A Specific Node

// Driver.Main()

// Removing nodes in main after creating a list with 3 elements

listManager.add();

listManager.add();

listManager.add();

listManager.remove();

listManager.display();

James Tam

Manager.Remove()

 public void remove ()
 {

 // CASE 1: EMPTY LIST
 if (head == null)
 System.out.println("List is already empty:
 Nothing to remove");

 // CASE 2: NON-EMPTY LIST
 else
 {
 removeNonempty();
 }
 }

4/3/2014

Linked lists 27

James Tam

Manager.RemoveNonempty()

 // Case 2 & 3:

 private void removeNonempty()

 {

 BookNode previous = null;

 BookNode current = head;

 String searchName = null;

 boolean isFound = false;

 String currentName;

 Scanner in = new Scanner(System.in);

 System.out.print("Enter name of book to remove: ");

 searchName = in.nextLine();

James Tam

Manager.RemoveNonempty() : 2

 // Determine if match exists

 // current points to node to delete

 // previous is one node prior

 while ((current != null) && (isFound == false))

 {

 currentName = current.getData().getName();

 if (searchName.compareToIgnoreCase(currentName) ==

 MATCH)

 isFound = true;

 else

 {

 previous = current;

 current = current.getNext();

 }

 }

4/3/2014

Linked lists 28

James Tam

Manager.RemoveNonempty() : 3

 // CASE 2A OR 2B: MATCH FOUND (REMOVE A NODE)

 if (isFound == true)

 {

 System.out.println("Removing book called " +

 searchName);

 // CASE 2A: REMOVE THE FIRST NODE

 if (previous == null)

 head = head.getNext();

 // CASE 2B: REMOVE ANY NODE EXCEPT FOR THE FIRST

 else

 previous.setNext(current.getNext());

 }

 // CASE 3: NO MATCHES FOUND (NOTHING TO REMOVE).

 else // isFound == false

 System.out.println("No book called " + searchName +

 " in the collection.");

 }

James Tam

Removing A Node From An Empty List

// Main

listManager.eraseList(); // Reminder: Blows away entire list

listManager.display();

listManager.remove(); // Trying to remove element from empty

4/3/2014

Linked lists 29

James Tam

Removing A Node From An Empty List (2)

• Case 1: Empty List

head

null

searchName:

isFound:

James Tam

•Case 2A: Remove first element

Non-Empty List: Remove

head

searchName:

isFound:

WHITE NINJA

WHITE NINJA PRINCE OF LIES
I AM AN AMERICAN

SOLDIER TOO

4/3/2014

Linked lists 30

•Case 2B: Remove any node except for the first

Non-Empty List: Remove (2)

head

searchName:

isFound:

ENDGAME

ENDGAME CHINESE GUNG FU BOOK OF 5 RINGS

James Tam

•Case 3: No match

Non-Empty List: Trying To Remove Non-Existent Node

head

searchName:

isFound:

MOBY DICK

A CHRISTMAS

CAROL

SPYWORLD
THE PRICE OF FREEDOM:

A WING COMMANDER NOVEL

4/3/2014

Linked lists 31

James Tam

Additional Material: Recursion

• “A programming technique whereby a function or method calls
itself either directly or indirectly.”

Direct Call

function

void fun ():

 :

 fun ()

 :

4/3/2014

Linked lists 32

Indirect Call

f1

f2

Indirect Call

f1

f2

f3

…

fn

4/3/2014

Linked lists 33

James Tam

Recursive Program

• Location of full example:
–/home/233/examples/recursion

James Tam

Simple Counting Example

• Most any iterative looping program can be written with a
recursive implementation.

• Example: Displaying even numbers between 0 - 50.

public class CountingDriver {
 public static final int FIRST = 0;
 public static final int LAST = 50;

 public static void count(int current) {
 if (current <= LAST) {
 System.out.println(current);
 count(current+2);
 }
 }

 public static void main(String [] args) {
 int current = FIRST;
 count(current);
 }
}

4/3/2014

Linked lists 34

James Tam

Recursive List Display

• The pseudo code and the diagrammatic trace are the same as
the iterative solution.

• The difference is that repetition occurs with repeated calls to a
recursive method instead of a loop.
–Calls:

•Driver.main() ->

•Manager.displayRecursive() ->

•Manager.displayAndRecurse()

–The first method called will be used for statements
that only execute once each time the list is displayed
(e.g., a header with underlining)

–The second method called will be used to display a
node at a time. After displaying the node the program
moves onto the next node and calls the method again.

James Tam

Manager.DisplayRecursive()

 public void displayRecursive()

 {

 BookNode temp = head;

 System.out.println("DISPLAYING LIST (R)");

 for (int i = 0; i < LIST_HEADER.length(); i++)

 System.out.print("-");

 System.out.println();

 if (temp == null)

 System.out.println("\tList is empty: nothing to

 display");

 else

 {

 int count = 1;

 displayAndRecurse(temp,count);

 }

 System.out.println();

 }

4/3/2014

Linked lists 35

James Tam

Manager.DisplayAndRecurse()

 private void displayAndRecurse(BookNode temp, int count)

 {

 // Stop when end of list reached

 if (temp == null)

 return;

 else

 {

 // Display data and move onto next element

 System.out.println("\t#" + count + ": " + temp);

 temp = temp.getNext();

 count = count + 1;

 displayAndRecurse(temp,count);

 }

 }

James Tam

After This Section You Should Now Know

• What is a linked list and how it differs from an array
implementation

• How to implement basic list operations using a linked list
–Creation of new empty list

–Destruction of the entire list

–Display of list elements (iterative and recursive)

–Searching the list

–Inserting new elements

–Removing existing elements

