
3/1/2014

Object-Oriented hierarchies, code reuse 1

Code Reuse Through
Hierarchies

You will learn about different ways of
creating class hierarchies to better organize
and group attributes and methods in order

to facilitate code reuse

James Tam

Recall O-O Approach: Finding Candidate Classes

3/1/2014

Object-Oriented hierarchies, code reuse 2

James Tam

What If There Are Commonalities Between Classes

• Examples:
– All birds ‘fly’

– Some types of animals ‘swim’: fish, penguins, some snakes, crocodiles,
some birds

– All animals ‘eat’, ‘drink’, ‘sleep’ etc.

– Under the current approach you would have the same behaviors
repeated over and over!

Hawk

eat()

sleep()

drink()

King Penguin
eat()

sleep()

drink()

Lion
eat()

sleep()

drink()
Waste! Waste! Waste!

James Tam

New Technique: Inheritance

• When designing an Object-Oriented program, look for
common behaviors and attributes
– E.g., color, species, eat(), drink(), sleep()

• These commonalities are defined in a ‘parent’ class

Animal

eat()

sleep()

drink()

color

species

3/1/2014

Object-Oriented hierarchies, code reuse 3

James Tam

New Technique : Inheritance (2)

• These commonalities are defined in a ‘parent’ class

• As appropriate other ‘child’ classes will directly include or
‘inherit’ all the non-private attributes and behaviors of the
parent class.
– ‘Privates’ are still accessible through public methods.

 Animal

eat()

sleep()

drink()

color

species

Hawk King Penguin Lion

Defining A Class That Inherits From Another

Format:
public class <Name of child class> extends <Name of parent
class>

{

 // Definition of child class – only what is unique to

 // this class

}

Example:
public class Lion extends Animal

{

 public void roar() {

 System.out.println("Rawr!");

 }

}

This means that a Lion
object has all the capabilities
of an Animal object

The only attributes
and methods that
need to be specified
are the ones unique
to a lion

3/1/2014

Object-Oriented hierarchies, code reuse 4

James Tam

First Inheritance Example

• Location of the full online example:
/home/233/examples/hierarchies/1basicExample

James Tam

Class Person

public class Person {

 public static final long DELAY_TIME = 1999999999;

 private void delayTime() {

 for (long i = 0; i <= DELAY_TIME; i++);

 }

 public void doDailyTasks() {

 System.out.println("I am sleeping: zzzZZZZzzz");

 delayTime();

 System.out.println("I am eating: yum! yum! yum!");

 delayTime();

 System.out.println("I am drinking: hic, hic, hic");

 delayTime();

 System.out.println("I am execrating: :P :P :P");

 }

}

3/1/2014

Object-Oriented hierarchies, code reuse 5

James Tam

Class Person: Private Method

public class Person {

 public static final long DELAY_TIME = 1999999999;

 private void delayTime() {

 for (long i = 0; i <= DELAY_TIME; i++);

 }

 public void doDailyTasks() {

 System.out.println("I am sleeping: zzzZZZZzzz");

 delayTime();

 System.out.println("I am eating: yum! yum! yum!");

 delayTime();

 System.out.println("I am drinking: hic, hic, hic");

 delayTime();

 System.out.println("I am execrating: :P :P :P");

 }

}

‘Helper’
methods, only
called internally,
are often set to
‘private’

James Tam

Class Hero: It Is A Person

public class Hero extends Person {

}

This automatically gives
instances of this class all the
capabilities of an instance of
class Person

3/1/2014

Object-Oriented hierarchies, code reuse 6

James Tam

Class Hero: More Than Just A Person

public class Hero extends Person {

 private int heroicCount;

 public Hero() {

 heroicCount = 0;

 }

 public void doHeroStuff() {

 System.out.println("I AM SAVING THE DAY FOR: TRUTH!

 JUSTICE!...AND ALL THAT GOOD

 STUFF!!!");

 heroicCount++;

 }

 public int getHeroicCount() {

 return(heroicCount);

 }

}

James Tam

The Driver Class: Person Vs. Hero

public class Driver

{

 public static void main(String [] args)

 {

 Person bob = new Person();

 bob.doDailyTasks();

 System.out.println();

 Hero clark = new Hero();

 clark.doDailyTasks();

 clark.doHeroStuff();

 }

}

3/1/2014

Object-Oriented hierarchies, code reuse 7

James Tam

Benefit Of Employing Inheritance

• Code reuse:
– The common and accessible attributes and methods of the parent will

automatically be available in all the children.

Person

+doDailyTasks()

Hero Accountant Teacher

James Tam

New Terminology: Method Overriding

• Overriding occurs when the child class has a different version
of a method than was implemented in the parent.

Person
+doDailyTasks()

Hero

+doDailyTasks()

3/1/2014

Object-Oriented hierarchies, code reuse 8

James Tam

Method Overriding Example

• Location of the complete example:
– /home/233/examples/hierarchies/2overriding

 Person
+doDailyTasks()

Hero

+doDailyTasks()

James Tam

Class Hero

public class Hero extends Person

{

 // New method: the rest of the class is the same as the

 // previous version

 public void doDailyTasks()

 {

 System.out.println("Pffff I need not go about mundane

 nicities such as eating!");

 }

}

3/1/2014

Object-Oriented hierarchies, code reuse 9

James Tam

The Driver Class (Included For Reference)

public class Driver

{

 public static void main(String [] args)

 {

 Person bob = new Person();

 bob.doDailyTasks();

 System.out.println();

 Hero clark = new Hero();

 clark.doDailyTasks();

 clark.doHeroStuff();

 }

}

James Tam

Overriding: The Type Of The Reference Determines
The Method

public class Person {

 public void doDailyTasks() {

 ...

 }

}

public class Hero extends Person {

 public void doDailyTasks() {

 ...

 }

}

 // Bob is a Person

 bob.doDailyTasks();

 // Clarke is a Hero

 clark.doDailyTasks();

3/1/2014

Object-Oriented hierarchies, code reuse 10

James Tam

New Terminology: Polymorphism

Poly = many Morphic = forms

•A polymorphic method is a method that has an implementation
in the parent class and a different implementation the child
class.

•Polymorphism: the specific method called will be automatically
be determined without any type checking needed.

•Recall the example:

James Tam

New Terminology: Super-class Vs. Sub-class

All people

on the earth

All people

in Canada

(Superset –

Bigger)

(Subset -

smaller)

Subclass (RadioButton)

Superclass (Button)

3/1/2014

Object-Oriented hierarchies, code reuse 11

James Tam

Inheritance Is Only One Way!

• A Hero is a Person but a Person is not a Hero!

• That means that while the sub-class can access the super-class
but the super-class cannot access the sub-class

New class

•New attributes

•New behaviors

Existing

class

•Attributes

•Behaviors

James Tam

The ‘Super’ Keyword

• Used to access the parts of the super-class.

• Format:

<super>.<method or attribute>

• Example:
 public void doDailyTasks() {

 System.out.println("Pffff I need not go about mundane

 nicities such as eating!");

 System.out.println("...well actually I do...");

 super.doDailyTasks();

 }

Parent’s version of
method

3/1/2014

Object-Oriented hierarchies, code reuse 12

James Tam

Super Keyword: When It’s Needed

• You only need this keyword when accessing non-unique
methods or attributes (exist in both the super and sub-classes).

• Without the super keyword then the sub-class will be accessed

Person
+doDailyTasks()

Hero

+doDailyTasks()

For a ‘Hero’ access super
class method (use ‘super’)
super.doDailyTasks()

For a ‘Hero’ access this
classes’ version (no super
keyword)
doDailyTasks()

James Tam

Super Keyword: When It’s Not Needed

• If that method or attribute exists in only one class definition
then there is no ambiguity.

Person

+doDailyTasks()

Hero

+doHeroStuff ()

For a ‘Hero’
doDailyTasks()

For a ‘Hero’
doHeroStuff()

3/1/2014

Object-Oriented hierarchies, code reuse 13

James Tam

Something Especially Good?

• Note: There Is No Super.Super In Java

James Tam

Calling The Super Class Constructor: Just
Super()

• This results in a call to the super classes’ constructor

• (Useful for initializing the attributes that are defined in the
super class)

3/1/2014

Object-Oriented hierarchies, code reuse 14

James Tam

Calling The Super Class Constructor

• Location of the full example:
/home/233/examples/hierarchies/3superConstructors

James Tam

Class Person

public class Person

{

 private int age;

 public Person() {

 age = 0;

 }

 public Person(int anAge) {

 age = anAge;

 }

 public int getAge() {

 return(age);

 }

3/1/2014

Object-Oriented hierarchies, code reuse 15

James Tam

Class Person (2)

 public String toString()

 {

 String s = "";

 s = s + "Age of person: " + age + "\n";

 return(s);

 }

}

James Tam

Class Hero: Using Super()

public class Hero extends Person

{

 private int heroicCount;

 public Hero() {

 super();

 heroicCount = 0;

 }

 public Hero(int anAge) {

 super(anAge);

 heroicCount = 0;

 }

 public void doHeroStuff() {

 heroicCount++;

 }

 public Person() {

 age = 0;

 }

 public Person(int anAge) {

 age = anAge;

 }

3/1/2014

Object-Oriented hierarchies, code reuse 16

James Tam

Class Hero (2): Using Super()

 public int getHeroicCount() {

 return(heroicCount);

 }

 public String toString () {

 String s = super.toString();

 if (s != null) {

 s = s + "Count of brave and heroic deeds: " +

 heroicCount + "\n";

 }

 return(s);

 }

}

public String toString()

{

 String s = "";

 s = s + "Age of person: "

 + age + "\n";

 return(s);

}

James Tam

The Driver Class

public class Driver

{

 public static void main(String [] args)

 {

 Hero clark = new Hero();

 Hero peter = new Hero(17);

 System.out.println(clark);

 System.out.println(peter);

 }

}

 public Person(int anAge) {

 age = anAge;

 }

 public Person() {

 age = 0;

 }

3/1/2014

Object-Oriented hierarchies, code reuse 17

James Tam

Access Modifiers And Inheritance

• Private ‘-‘: still works as-is, private attributes and methods can
only be accessed within that classes’ methods.
– Child classes, similar to other classes must access private attributes

through public methods.

• Public ‘+’: still works as-is, public attributes and methods can
be accessed anywhere.

• New level of access, Protected ‘#’: can access the method or
attribute in the class or its sub-classes.

Summary: Levels Of Access Permissions

Access
level

 Accessible to

Same class Subclass Not a subclass

Public Yes Yes Yes

Protected Yes Yes No

Private Yes No No

3/1/2014

Object-Oriented hierarchies, code reuse 18

Levels Of Access Permission: An Example

public class P
{
 private int num1;
 protected int num2;
 public int num3;
 // Can access num1, num2 & num3 here.
}

public class C extends P
{
 // Can’t access num1 here
 // Can access num2, num3
}

public class Driver
{
 // Can’t access num1 here and generally can’t access num2 here
 // Can access num3 here
}

General Rules Of Thumb

• Variable attributes should not have protected access but
instead should be private.

• Most methods should be public.

• Methods that are used only by the parent and child classes
should be made protected.

3/1/2014

Object-Oriented hierarchies, code reuse 19

Updated Scoping Rules

• When referring to an identifier in a method of a class
1. Look in the local memory space for that method

2. Look in the definition of the class

3. Look in the definition of the classes’ parent

Updated Scoping Rules (2)

public class P

{

}

public class C extends P

{

 public void method ()

 {

 }

}

<<< First: Local >>>

<<< Second: Attribute>>>

<<< Third: Parent’s attribute >>>

Reference to an identifier e.g., ‘num’

Similar to how local variables
can shadow attributes, the
child attributes can shadow
parent attributes.

3/1/2014

Object-Oriented hierarchies, code reuse 20

James Tam

Updated Scoping Rules: A Trace

• Location of the full online example:
/home/233/examples/hierarchies/4scope

James Tam

Parent: Class P

public class P {

 protected int x = 1;

 protected int a = 2;

 public void method1() {

 System.out.println("P.method1()");

 System.out.println("x/a: " + x + " " + a);

 }

 public void method2() {

 int a = 3;

 System.out.println("P.method2()");

 System.out.println("x/a: " + x + " " + a);

 }

}

3/1/2014

Object-Oriented hierarchies, code reuse 21

James Tam

Child: Class C

public class C extends P

{

 private int x = 3;

 private int y = 4;

 public void method1()

 {

 System.out.println("C.method1()");

 int z = 5;

 int x = 6;

 System.out.println("x/y/z/a: " + x +

 " " + y + " " + z + " " + a);

 }

}

James Tam

The Driver Class

public class Driver {

 public static void main(String [] args) {

 // Case 1

 P p = new P();

 p.method1();

 // Case 2

 p.method2();

 // Case 3

 C c = new C();

 c.method1();

 // Case 4

 c.method2();

 }

}

3/1/2014

Object-Oriented hierarchies, code reuse 22

James Tam

Case 1

class P

{

 protected int x = 1;

 protected int a = 2;

 public void method1()

 {

 System.out.println("P.method1()");

 System.out.println("x/a: " + x + " " + a);

 }

James Tam

Case 2

class P

{

 protected int x = 1;

 protected int a = 2;

 public void method2()

 {

 int a = 3;

 System.out.println("P.method2()");

 System.out.println("x/a: " + x + " " + a);

 }

}

3/1/2014

Object-Oriented hierarchies, code reuse 23

James Tam

Case 3

class P {

 protected int x = 1;

 protected int a = 2;

}

public class C extends P {

 private int x = 3;

 private int y = 4;

 public void method1() {

 System.out.println("C.method1()");

 int z = 5;

 int x = 6;

 System.out.println("x/y/z/a: " + x +

 " " + y + " " + z + " " + a);

 }

}

James Tam

Case 4: Just Call The Parent, No Child

class P {

 protected int x = 1;

 protected int a = 2;

 public void method1() { }

 public void method2() {

 int a = 3;

 System.out.println("P.method2()");

 System.out.println("x/a: " + x + " " + a);

 }

}

public class C extends P {

 private int x = 3;

 private int y = 4;

 public void method1() { }

}

c.method2();

3/1/2014

Object-Oriented hierarchies, code reuse 24

The Final Modifier (Inheritance)

• What you know: the keyword final means unchanging (used
in conjunction with the declaration of constants)

• Methods preceded by the final modifier cannot be overridden

e.g., public final void displayTwo ()

• Classes preceded by the final modifier cannot be extended

– e.g., final public class ParentFoo

Reminder: Casting

• The casting operator can be used to convert between types.

• Format:
<Variable name> = (type to convert to) <Variable name>;

• Example (casting needed: going from more to less)
double full_amount = 1.9;

int dollars = (int) full_amount;

• Example (casting not needed: going from less to more)
int dollars = 2;

double full_amount = dollars;

3/1/2014

Object-Oriented hierarchies, code reuse 25

James Tam

Example Inheritance Hierarchy

FedStarShip

+attack()

KlingStarShip

+attack()

+utterBattleCry()

StarShip
+attack()

James Tam

Casting And Inheritance (Up)

• Because the child class IS-A parent class you can substitute
instances of a subclass for instances of a superclass.

You can substitute a

FedStarShip for a

StarShip

You can substitute a

KlingStarShip for

a StarShip

√

FedStarShip

+attack()

KlingStarShip

+attack()

+utterBattleCry()

StarShip
+attack()

3/1/2014

Object-Oriented hierarchies, code reuse 26

James Tam

Casting And Inheritance (Down)

• You cannot substitute instances of a superclass for instances of
a subclass

You cannot substitute a

StarShip for a FedStarShip

or a KlingStarShip

FedStarShip

+attack()

KlingStarShip

+attack()

+utterBattleCry()

StarShip
+attack()

x

James Tam

Reminder: Operations Depends On Type

•Sometimes the same symbol performs different operations
depending upon the type of the operands/inputs.

•Example:
int num1 = 2;

int num2 = 3;

num1 = num1 + num2;

Vs.
String str = “foo” + “bar”;

•Some operations won’t work on some types

•Example:
String str = 2 / 3;

3/1/2014

Object-Oriented hierarchies, code reuse 27

James Tam

Reminder: Behavior Depends Upon Class Type

•The methods that can be invoked by an object depend on the
class definition

•Example:
class X class Y

{ {

 method1() { method2() {

 } }

} }

X anX = new X();

anX.method1(); // Yes

Y anY= new Y();

anY.method1(); // No

James Tam

Casting And Inheritance

StarShip regular = new StarShip();

KlingStarShip kling = new KlingStarShip();

regular.utterBattleCry(); // Inappropriate action for type

regular = kling;

regular.utterBattleCry(); // I think I point to the wrong type

((KlingStarShip) regular).utterBattleCry(); // I know I point to

 the correct type

regular = new StarShip();

kling = (KlingStarShip) regular; // Dangerous cast

kling.utterBattleCry(); // Inappropriate action for type

x

x

x

3/1/2014

Object-Oriented hierarchies, code reuse 28

James Tam

Caution About Class Casting

• When casting between classes only use the cast operator if
you are sure of the type!

• Check if an object is of a particular type is via the instanceof
operator

• (When used in an expression the instanceof operator
returns a boolean result)

• Format:

if (<reference name> instanceof <class name>)

• Example:

if (supPerson instanceof Person)

James Tam

Instanceof Example

• Location of the full example:
/home/233/examples/hierarchies/5typeCheck

Person

+doDailyTasks()

Hero

+doHeroStuff ()

Dog

+bark()
Type ‘Person’

Type ‘Person’

Type ‘Dog’

Not type ‘Person’

3/1/2014

Object-Oriented hierarchies, code reuse 29

James Tam

Driver.main()

Person regPerson = new Person();

Hero supPerson = new Hero();

Dog rover = new Dog();

// Instanceof checks if the object is a certain type or

// a subclass of that type (e.g., a Hero is a Person)

if (regPerson instanceof Person)

 System.out.println("regPerson is a type of Person");

if (supPerson instanceof Person)

 System.out.println("supPerson is also a type of Person");

// Checks for non-hierarchical: Compiler prevents nonsensical

// checks

//if (rover instanceof Person)

// System.out.println("Rover is also a type of Person");

James Tam

Driver.main(): 2

if (supPerson instanceof Hero)

 System.out.println("supPerson is a type of Hero");

// Checks within hierarchy: Compiler doesn't prevent

if (regPerson instanceof Hero)

 System.out.println("[Should never appear]: regPerson is a

 type of Hero");

3/1/2014

Object-Oriented hierarchies, code reuse 30

James Tam

Containers: Homogeneous

• Recall that arrays must be homogeneous: all elements must be
of the same type e.g., int [] grades

• Recall: A child class is an instance of the parent (a more specific
instance with more capabilities).

• If a container, such as an array is needed for use in conjunction
with an inheritance hierarchy then the type of each element
can simply be the parent.
StarShip [] array = new StarShip[2];

array[0] = new StarShip(); // [0] wants a StarShip, gets a StarShip

array[1] = new KlingStarShip(); // [1] wants a StarShip, gets a

 // KlingStarShip (even better!)

StarShip

+attack()

KlingStarShip

+utterBattleCry()

The Parent Of All Classes

•You’ve already employed inheritance.

•Class Object is at the top of the inheritance hierarchy.

•Inheritance from class Object is implicit.

•All other classes automatically inherit its attributes and
methods (left and right are logically the same)
class Person class Person extends Object

{ {

} }

–e.g., “toString()” are available to its child classes

•For more information about this class see the url:
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html

3/1/2014

Object-Oriented hierarchies, code reuse 31

James Tam

The Parent Of All Classes (2)

• This means that if you want to have an array that can contain
any type of Java object then it can be an array of type Object.
– Object [] array = new Object[SIZE];

• Built-in array-like classes such as class Vector (an array that
‘automatically’ resizes itself consists of an array attribute
whose type is class Object)
– For more information on class Vector:

– http://docs.oracle.com/javase/6/docs/api/java/util/Vector.html

James Tam

Determining Type: Hierarchies

• As mentioned normally it should not be needed for a
polymorphic method (the child class overrides a parent
method).
– No instanceof needed

• However type checking is needed if a method specific to the
child is being invoked.
• Check with instanceof is needed

Person
+doDailyTasks()

Hero

+doDailyTasks()

StarShip
+attack()

KlingStarShip

+utterBattleCry()

3/1/2014

Object-Oriented hierarchies, code reuse 32

James Tam

Example: Containers With ‘Different’ Types

• Location of the full example:
– /home/233/examples/hierarchies/6hierarchiesContainment

James Tam

Class StarShip

public class StarShip {

 public static final int MAX_HULL = 400;

 public static final char DEFAULT_APPEARANCE = 'C';

 public static final int MAX_DAMAGE = 50;

 private char appearance;

 private int hullValue;

 public StarShip () {

 appearance = DEFAULT_APPEARANCE;

 hullValue = MAX_HULL;

 }

 public StarShip (int hull) {

 appearance = DEFAULT_APPEARANCE;

 hullValue = hull;

 }

3/1/2014

Object-Oriented hierarchies, code reuse 33

James Tam

Class StarShip (2)

 public StarShip (char newAppearance) {

 this();

 appearance = newAppearance;

 }

 public int attack() {

 System.out.println("<<< StarShip.attack() >>>");

 return(MAX_DAMAGE);

 }

James Tam

Class StarShip (3): Get()’s, Set()’s

 public char getAppearance () {

 return appearance;

 }

 public int getHullValue() {

 return(hullValue);

 }

 public void setAppearance(char newAppearance) {

 appearance = newAppearance;

 }

 public void setHull(int newHullValue) {

 hullValue = newHullValue;

 }

}

3/1/2014

Object-Oriented hierarchies, code reuse 34

James Tam

Class FedStarShip

public class FedStarShip extends StarShip {

 public static final int MAX_HULL = 800;

 public static final char DEFAULT_APPEARANCE = 'F';

 public static final int MAX_DIE_ROLL = 6;

 public static final int DIE_ROLL_BOOSTER = 1;

 public static final int NUM_DICE = 20;

 public FedStarShip() {

 super();

 setHull(MAX_HULL); // 800 not 400 due to shadowing

 setAppearance(DEFAULT_APPEARANCE); // ‘F’ not ‘C’

 }

Shadows
parent
constants

James Tam

Class FedStarShip (2)

 // Overridden / polymorphic method

 public int attack() {

 System.out.println("<<< FedStarShip.attack() >>>");

 Random aGenerator = new Random();

 int i = 0;

 int tempDamage = 0;

 int totalDamage = 0;

 for (i = 0; i < NUM_DICE; i++)

 {

 tempDamage = aGenerator.nextInt(MAX_DIE_ROLL) +

 DIE_ROLL_BOOSTER;

 totalDamage = totalDamage + tempDamage;

 }

 return(totalDamage);

 }

}

1

6

20

3/1/2014

Object-Oriented hierarchies, code reuse 35

James Tam

Class KlingStarShip

public class KlingStarShip extends StarShip {

 public static final char DEFAULT_APPEARANCE = 'K';

 public static final int MAX_DIE_ROLL = 12;

 public static final int DIE_ROLL_BOOSTER = 1;

 public static final int NUM_DICE = 20;

 public KlingStarShip() {

 super();

 setAppearance(DEFAULT_APPEARANCE);

 }

 // Unique to KlingStarShip objects

 public void utterBattleCry() {

 System.out.println("Heghlu'meH QaQ jajvam!");

 }

}

James Tam

Class KlingStarShip (2)

 // Overridden / polymorphic method

 public int attack() {

 System.out.println("<<< KlingStarShip.attack() >>>");

 Random aGenerator = new Random();

 int i = 0;

 int tempDamage = 0;

 int totalDamage = 0;

 for (i = 0; i < NUM_DICE; i++) {

 tempDamage = aGenerator.nextInt(MAX_DIE_ROLL) +

 DIE_ROLL_BOOSTER;

 totalDamage = totalDamage + tempDamage;

 }

 return(totalDamage);

 }

12

1

20

3/1/2014

Object-Oriented hierarchies, code reuse 36

James Tam

Class Galaxy

public class Galaxy {

 public static final int SIZE = 4;

 private StarShip [][] grid;

James Tam

Class Galaxy (2)

 public Galaxy () {

 boolean squareOccupied = false;

 grid = new StarShip [SIZE][SIZE];

 int r;

 int c;

 int hull;

 for (r = 0; r < SIZE; r++) {

 for (c = 0; c < SIZE; c++)

 {

 grid[r][c] = null;

 }

 }

 grid[0][0] = new FedStarShip();

 grid[0][1] = new KlingStarShip();

 grid[1][0] = new StarShip();

 }

3/1/2014

Object-Oriented hierarchies, code reuse 37

James Tam

Class Galaxy (3)

 public void runSimulatedAttacks() {

 int damage;

 damage = grid[0][0].attack();

 System.out.println("Fed ship attacks for: " + damage);

 System.out.println();

 damage = grid[0][1].attack();

 System.out.println("Kling ship attacks for: " + damage);

 System.out.println();

 damage = grid[1][0].attack();

 System.out.println("Old style ship attacks for: " +

 damage);

 System.out.println();

Type check not
needed
because:

attack()
method is
overridden /
polymorphic

James Tam

Class Galaxy (4)

 /* Won't work because it's array of references to

 StarShips not KlingStarShips.

 grid[1][0].utterBattleCry(); */

 if (grid[0][0] instanceof KlingStarShip)

 ((KlingStarShip) grid[0][0]).utterBattleCry();

 if (grid[0][1] instanceof KlingStarShip)

 ((KlingStarShip) grid[0][1]).utterBattleCry();

 if (grid[1][0] instanceof KlingStarShip)

 ((KlingStarShip) grid[1][0]).utterBattleCry();

 }

} // End runSimulatedAttacks()

Type check
‘instanceof’
needed because:

Array of StarShips
but
utterBattleCry()
unique to
KlingStarShip

3/1/2014

Object-Oriented hierarchies, code reuse 38

James Tam

Driver Class: SpaceSimulator

public class SpaceSimulator

{

 public static void main(String [] args)

 {

 Galaxy alpha = new Galaxy();

 alpha.display();

 alpha.runSimulatedAttacks();

 }

}

James Tam

New Terminology: Binding

• When a method is invoked, binding is the process of
determining which method definition will be executed.

• If neither method overloading nor method overriding are
employed then binding is very easy to determine.

Person jim = new Person();

jim.setAge(27);

public class Person {

 private int age;

 public Person() {

 age = 0;

 }

 public setAge(int anAge) {

 age = anAge;

 }

}

3/1/2014

Object-Oriented hierarchies, code reuse 39

Method Overloading Vs. Method Overriding

•Method Overloading (what you should know)
–Multiple method implementations for the same class

–Each method has the same name but the type, number or order of the
parameters is different (signatures are not the same)

–The method that is actually called is determined at program compile
time (early binding).

–i.e., <reference name>.<method name>(parameter list);

Distinguishes

overloaded methods

Method Overloading Vs. Method Overriding (2)

• Examples of method overloading:

public class Foo

{

 public void display() { }

 public void display(int i) { }

 public void display(char ch) { }

}

Foo f = new Foo ();

f.display();

f.display(10);

f.display(‘c’);

Binding at
compile time
(early)

3/1/2014

Object-Oriented hierarchies, code reuse 40

Method Overloading Vs. Method Overriding (3)

•Method Overriding
–The method is implemented differently between the parent and child
classes.

–Each method has the same return value, name and parameter list
(identical signatures).

–The method that is actually called is determined at program run time
(late binding).

–i.e., <reference name>.<method name> (parameter list);

The type of the reference

(implicit parameter “this”)

distinguishes overridden

methods

Method Overloading Vs. Method Overriding (4)

• Example of method overriding:
public class Person {

 public void doDailyTasks() {

 ...

 }

}

public class Hero extends Person {

 public void doDailyTasks() {

 ...

 }

}

Hero clarke = new Hero();

clarke.doDailyTasks()

Binding at run
time (early)

3/1/2014

Object-Oriented hierarchies, code reuse 41

James Tam

Multiple Inheritance

• But what happens if some behaviors or attributes are common
to a group of classes but some of those classes include
behaviors shared with other groups?

• Or some groups of classes share some behaviors but not
others?

Swimmers

swim()

WaterBreathers Flyers

fly()

Hawk Eagle Duck Fish Dolphin

James Tam

Multiple Inheritance (2)

• It is implemented in some languages e.g., C++

• It is not implemented in other languages e.g., Java

• Pro: It allows for more than one parent class
– (JT: rarely needed but nice to have that capability for that odd

exceptional case).

• Con: Languages that allow for multiple inheritance require a
more complex implementation even for single inheritance
(classes only have one parent) cases.

WingedFlyer

fly()

Hawk Eagle
BirdMan Human

MachineFlyer

fly()

3/1/2014

Object-Oriented hierarchies, code reuse 42

Java Interfaces

• Similar to a class

• Provides a design guide rather than implementation details

• Specifies what methods should be implemented but not how
– An important design tool: Agreement for the interfaces should occur

very early before program code has been written.

– (Specify the signature of methods so each part of the project can
proceed with minimal coupling between classes).

– Changing the method body rather than the method signature won’t
‘break’ code.

• It’s a design tool so they cannot be instantiated

Interfaces: Format

Format for defining an interface
 public interface <name of interface>

 {

 constants

 methods to be implemented by the class that realizes this

 interface

 }

Format for realizing / implementing the interface

 public class <name of class> implements <name of interface>

 {

 attributes

 methods actually implemented by this class

 }

3/1/2014

Object-Oriented hierarchies, code reuse 43

Interfaces: A Checkers Example

Basic board

Regular rules

Variant rules

Interface Board

public interface Board

{

 public static final int SIZE = 8;

 public void displayBoard();

 public void initializeBoard();

 public void movePiece();

 boolean moveValid(int xSource,

 int ySource,

 int xDestination,

 int yDestination);

 ...

}

3/1/2014

Object-Oriented hierarchies, code reuse 44

Class RegularBoard

public class RegularBoard implements Board
{
 public void displayBoard()
 {
 ...
 }

 public void initializeBoard()
 {
 ...
 }

Class RegularBoard (2)

 public void movePiece() {
 // Get (x, y) coordinates for the source and destination
 if (moveValid(xS, yS, xD, yD) == true)
 // Actually move the piece
 else
 // Don’t move piece and display error message
 }

 public boolean moveValid(int xSource, int ySource,
 int xDestination,
 int yDestination)
 {
 if (moving forward diagonally)
 return(true);
 else
 return(false);
 }
} // End of class RegularBoard

3/1/2014

Object-Oriented hierarchies, code reuse 45

Class VariantBoard

public class VariantBoard implements Board
{
 public void displayBoard ()
 {
 ...
 }

 public void initializeBoard ()
 {
 ...
 }

Class VariantBoard (2)

 public void movePiece() {
 // Get (x, y) coordinates for the source and destination
 if (moveValid (xS, yS, xD, yD) == true)
 // Actually move the piece
 else
 // Don’t move piece and display error message
 }

 public boolean moveValid(int xSource, int ySource,
 int xDestination, int yDestination)
 {
 if (moving straight-forward or straight side-ways)
 return(true);
 else
 return(false);
 }
} // End of class VariantBoard

3/1/2014

Object-Oriented hierarchies, code reuse 46

Interfaces: Recapping The Example

• Interface Board
– No state (variable data) or behavior (body of the method is empty)

– Specifies the behaviors that a board should exhibit e.g., clear screen

– This is done by listing the methods that must be implemented by classes
that implement the interface.

• Class RegularBoard and VariantBoard
– Can have state and methods

– They must implement all the methods specified by the interface
‘Board’ (but can also implement other methods too)

Specifying Interfaces In UML

<< interface >>

Interface name

method specification

Class name

method implementation

Realization / Implements

3/1/2014

Object-Oriented hierarchies, code reuse 47

Alternate UML Representation (Lollipop
Notation)

Class name

method implementation

Interface

name

James Tam

Implementing Multiple Interfaces

• Java allows for this.

Class

Interface1 Interface2 Interface3

3/1/2014

Object-Oriented hierarchies, code reuse 48

Implementing Multiple Interfaces

Format:
 public class <class name> implements <interface name 1>,

 <interface name 2>, <interface name 3>…

 {

 }

Multiple Implementations Vs. Multiple
Inheritance

•A class can implement multiple interfaces

•Classes in Java cannot extend more than one class

•Again multiple inheritance is not possible in Java but is possible
in other languages such as C++:

–Multiple inheritance (mock up code)

class <class name 1> extends <class
name 2>, <class name 3>…

{

}

3/1/2014

Object-Oriented hierarchies, code reuse 49

Multiple Implementations Vs.
Multiple Inheritance (2)

• Multiple inheritance: conceptual view representing using UML

 Parent class 1 Parent class 2 Parent class 3

Child class

Abstract Classes (Java)

•Classes that cannot be instantiated.

•A hybrid between regular classes and interfaces.

•Some methods may be implemented while others are only
specified (no body).

•Used when the parent class:
–specifies a default implementation of some methods,

–but cannot define a complete default implementation of other methods
(implementation must be specified by the child class).

•Format:
public abstract class <class name>

{

 <public/private/protected> abstract method ();

}

3/1/2014

Object-Oriented hierarchies, code reuse 50

Abstract Classes (Java): 2

• Example1:
 public abstract class BankAccount

 {

 protected float balance;

 public void displayBalance()

 {

 System.out.println("Balance $" + balance);

 }

 public abstract void deductFees() ;

 }

1) From “Big Java” by C. Horstmann pp. 449 – 500.

Another Example For Using An Abstract Class

<< interface >>

Board

+SIZE:int

+displayBoard()

+initializeBoard()

+movePiece()

+moveValid()

CheckerBoard

{abstract}

+displayBoard()

+initializeBoard()

+movePiece()

+moveValid()

RegularBoard

+moveValid()

VariantBoard

+moveValid()

3/1/2014

Object-Oriented hierarchies, code reuse 51

James Tam

You Should Now Know

• What is inheritance, when to employ it, how to employ it in
Java

• How casting works within an inheritance hierarchy
• When the instanceof operator should and should not be used to

check for type in an inheritance hierarchy

• What is the effect of the keyword "final" on inheritance
relationships

• What is method overriding
• How does it differ from method overloading

• What is polymorphism

• What are the benefits of employing inheritance

James Tam

You Should Now Know (2)

• How does the ‘protected’ level of access permission work,
how do private and public access permissions work with
an inheritance hierarchy.

– Under what situations should each level of permission be employed

• Updated scoping rules (includes inheritance) and how
shadowing works with an inheritance hierarchy

• How the ‘super’ keyword works, when it is and is not needed

• Class Object is the parent of all classes in Java
– Capabilities inherited from the parent (if you refer to the API for class

Object)

• How homogeneous composite types (such as arrays) can
appear to contain multiple types within one container

3/1/2014

Object-Oriented hierarchies, code reuse 52

James Tam

You Should Now Know (3)

• What are interfaces/types
– How do types differ from classes

– How to implement and use interfaces in Java

– When interfaces should be employed

• What are abstract classes in Java and how do they differ from
non-abstract classes and interfaces.

– When to employ abstract classes vs. interfaces vs. ‘regular’ classes

• How to read/write UML notations for inheritance and
interfaces.

• What is the difference between early and late binding

• What is multiple inheritance
– How does it differ from multiple implementations

– What are its advantages and disadvantages

