
11/17/2015

Administrative and course introduction 1

VBA (Visual Basic For Applications)
Programming

Overview of concepts covered in this section:
• Collections
• Find and replace
• Branching
• Looping
• Linking MS-Office documents
• Practical application of VBA

Collection

• An object that consists of other objects

– Real World example: a book consists of pages, a library consists of books

• Example: The Documents collection will allow access to the
documents that have been opened.

• Access to a collection rather than the individual objects may be
time-saving shortcut.
– Instead of manually closing all open documents this can be done in one

instruction:

Documents.close

11/17/2015

Administrative and course introduction 2

Types Of Collections

• Some attributes of a document that return a collection.

• Lists: access to all lists in a document (example coming up).

• Shapes: access to MS-Word shapes in a document (rectangles,
circles etc. example coming up).

• InlineShapes: access to images inserted into a Word document
(example coming up).

• Tables: access to all tables in a document (detailed example
coming up but a few brief examples below).

– E.g., ActiveDocument.Tables –accesses all the tables in your
document

– ActiveDocument.Tables(1) –access to the first table in a document.

• Windows: briefly introduced in the last section

The ActiveDocument Object

• Quick recap: although you may have many documents open,
the ‘active document’ is the document that you are currently
working with:

The active
document

11/17/2015

Administrative and course introduction 3

Attributes Of The ActiveDocument Object

• Some of the basic attributes of ActiveDocument.
Application: the application/program associated with
the document (useful if a VBA macro is linking several
applications)

Name: the name of the current document (useful for determining the
active document if multiple documents are currently open).

Path: the save location of the active document e.g. C:\Temp\

FullName: the name and save location of the current document.

HasPassword: true/false that document is password protected

SpellingChecked: true/false that has been spell checked since
document was last edited

Note: Information for these attributes can be viewed by passing the
information as a parameter to a message box e.g., MsgBox
(ActiveDocument.Name)

Methods Of The ActiveDocument Object

• Some useful methods of ActiveDocument.

Checkspelling(): exactly as it sounds!

Close(): covered in the previous section

CountNumberedItems(): see image (this slide)

DeleteAllComments(): see image (this slide)

Printout(): prints current active document on the default printer

Save() : covered in the previous section

SaveAs2() : rename document

Select(): covered in the previous section

SendMail(): see image (next slide)

11/17/2015

Administrative and course introduction 4

ActiveDocument.SendMail()

• Runs the default email program

• The active document automatically becomes an attachment

• Subject line = name of document

• (For anything more ‘fancy’ you should use VBA to create and
access an MS-Outlook object)

“Finding” Things In A Document

• It can be done in different ways

• Example (common) ‘Find’ is an object that is part of the
‘Selection’ object in a document.
– JT’s note: although it may appear to be confusing at first it doesn’t mean

that the find (or find and replace) requires text to be selected.

– Making ‘Find’ a part of ‘Selection’ was merely a design decision on
the part of Microsoft.

• Example (alternative is JT’s preferred approach) ‘Find’ is an
object that is part of the ‘Content’ object of the
‘ActiveDocument’
– ActiveDocument.Content.Find

– More details coming up...

One source of information:
http://msdn.microsoft.com/en-us/library/office/aa211953(v=office.11).aspx

http://msdn.microsoft.com/en-us/library/office/aa211953(v=office.11).aspx

11/17/2015

Administrative and course introduction 5

Single Replacement

• Word document containing the macro: 1simpleFind.docm
sub simpleFind()

ActiveDocument.Content.Find.Execute FindText:="tamj",ReplaceWith:="tam"

end Sub

'The instruction can be broken into two lines without causing

'An error by using an underscore as a connector

ActiveDocument.Content.Find.Execute FindText:="tamj", _

ReplaceWith:="tam"

Background for example:
• My old email address (still works):

tamj@cpsc.ucalgary.ca
• My new email address:

tam@ucalgary.ca
• Incorrect variant:

tamj@ucalgary.ca

More Complex Find And Replace

• Word document containing the macro:
findReplaceAllCaseSensitive.docm

Sub findReplaceAllCaseSensitive()

ActiveDocument.Content.Find.Execute FindText:="tamj", _

ReplaceWith:="tam", Replace:=wdReplaceAll, _

MatchCase:=True

End Sub

Before After

mailto:tamj@cpsc.ucalgary.ca
mailto:tam@ucalgary.ca

11/17/2015

Administrative and course introduction 6

With, End With

• For ‘deep’ commands that require many levels of ‘dots’, the ‘With’, ‘End
With’ can be a useful abbreviation.

• Example

With ActiveDocument.Content.Find

.Text = "tamj"

Equivalent to (if between the ‘with’ and the ‘end with’:

ActiveDocument.Content.Find.Text = "tamj"

• Previous example, the ‘Find’ employing ‘With’, ‘End With’:

• Also the search and replacement text are specified separately to shorten
the ‘execute’ (the “ActiveDocument.Content.Find” listed
once)

With ActiveDocument.Content.Find

.Text = "tamj"

.Replacement.Text = "tam"

.Execute MatchCase:=True, Replace:=wdReplaceAll

End With

‘Find text’ and
‘replacement text’
moved here to
simplify the

‘.execute’

ActiveDocument.Content.Find.Execute

Find And Replace

• It’s not just limited to looking up text.

• Font effects e.g., bold, italic etc. can also be ‘found’ and
changed.

11/17/2015

Administrative and course introduction 7

Finding And Replacing Bold Font

• Word document containing the macro: 2findBold.docm
'Removes all bold text

Sub findBold()

With ActiveDocument.Content.Find

.Font.Bold = True

With .Replacement

.Font.Bold = False

End With

.Execute Replace:=wdReplaceAll

End With

End Sub

Finding/Replacing Formatting Styles

• You may already have a set of pre-created formatting styles
defined in MS-Word.

• You can redefine the characteristic of a style if you wish.

• Assume for this example that you wish to retain all existing
styles and not change their characteristics.

• But you want to replace all instances of one style with another
style e.g., all text that is ‘normal’ is to become ‘TamFont’

• ‘Find’ can be used to search (and replace) instances of a
formatting style.

11/17/2015

Administrative and course introduction 8

Finding/Replacing Formatting Styles (2)

• Word document containing the macro:
3findReplaceStyle.docm
Sub findReplaceStyle()

With ActiveDocument.Content.Find

.Style = "Normal"

With .Replacement

.Style = "TamFont"

End With

.Execute Replace:=wdReplaceAll

End With

End SubBEFORE AFTER

‘Normal’
style
becomes
‘TamFont’

Recap: Programs You’ve Seen So Far Is Sequential
Execution

• Each instruction executes from beginning to end, one after the
other

• When the last instruction is reached then the program ends

Start

End

11/17/2015

Administrative and course introduction 9

• Making decisions (branching)

• Looping (repetition)

New Program Writing Concepts (Non-Sequential)

Grade
point >= 1.0

MsgBox(“Passed”)

True

MsgBox(“Failed”)

False

Play again?

Run game

Y

END GAME

N

START

New Terminology

• Boolean expression: An expression that must work out
(evaluate to) to either a true or false value.
– e.g., it is over 45 Celsius today

– e.g., the user correctly entered the password

• Body: A block of program instructions that will execute under
a specified condition.

– Style requirement

• The ‘body’ is indented (4 spaces)

• A “sub-body” is indented by an additional 4 spaces (8 or more spaces)

Sub Document_Open()
MsgBox ("Fake virus!")

End Sub

This/these instruction/instructions run
when you tell VBA to run the macro, the
‘body’ of the macro program

11/17/2015

Administrative and course introduction 10

Branching: Making Decisions In A Program

• Similar to the Excel (IF-Function): Check if some condition has
been met (e.g., password for the document correctly entered):
Boolean expression

• But the IF-Construct employed with programming languages
is not just a function that returns a value for the true or false
cases.
– For each condition: a statement or a collection of statements can be

executed (this is referred to as “the body” of the if or else case.

– Example: entering a password

• Boolean expression true, password matches:

–True case body: display confirmation message and run program

• Boolean expression false, password doesn’t match:

–False case body: display error message

Branching/Decision Making Mechanisms

• If-Then

• If-Then, Else Similar to Excel if-then

• If-Then, ElseIf, Else Similar to Excel nested if’s

11/17/2015

Administrative and course introduction 11

Allowable Operators For Boolean Expressions

if (value operator value) then

VBA Mathematical

operator equivalent Meaning Example

< < Less than 5 < 3

> > Greater than 5 > 3

= = Equal to 5 = 3

<= ≤ Less than or equal to 5 <= 5

>= ≥ Greater than or equal to 5 >= 4

<> ≠ Not equal to x <> 5

Decision Making With ‘If-Then’

Boolean
Then execute an

instruction or instructions

True

False

Remainder of

the program

11/17/2015

Administrative and course introduction 12

If-Then

• Format:
If (Boolean expression) Then

If-Body

End if

• Example:
If (totalWords < MIN_SIZE) Then

MsgBox ("Document too short, total words " &

totalWords)

End If

If-Then: Complete Example

• Word document containing the macro: 4wordCount.docm
' Try deleting all the words in the Word doc and run the

' macro again

Sub wordCount()

Dim totalWords As Integer

MIN_SIZE = 100

totalWords = ActiveDocument.Words.Count

If (totalWords < MIN_SIZE) Then

MsgBox ("Document too short, total words " &

totalWords)

End If

End Sub

11/17/2015

Administrative and course introduction 13

Decision Making With An ‘If, Else’

• Used when different Actions (separate bodies) are required for
the true result (IF-case) vs. the false result (ELSE-case)

Decision Making With An ‘If, Else’

Boolean Execute an instruction

or instructions (if-body)

True

False

Execute an instruction

or instructions (else-body)

Remainder of

the program

11/17/2015

Administrative and course introduction 14

If-Then (True), Else (False)

• Format:
If (Boolean expression) Then

If-Body

Else

Else-Body

End if

• Example:
If (totalWords < MIN_SIZE) Then

MsgBox ("Document too short, total words " & totalWords)

Else

MsgBox ("Document meets min. length requirements")

End If

If-Then, Else: Complete Example

• Word document containing the macro: 5wordCountV2.docm
' Try deleting words or changing the minimum size and observe
' the effect on the program.

Sub wordCountV2()

Dim totalWords As Integer

MIN_SIZE = 1000

totalWords = ActiveDocument.Words.Count

If (totalWords < MIN_SIZE) Then

MsgBox ("Document too short, total words " &

totalWords)

Else

MsgBox ("Document meets min. length requirements")

End If

End Sub

11/17/2015

Administrative and course introduction 15

Logic Can Be Used In Conjunction With
Branching

• Typically the logical operators AND, OR are used with multiple
conditions/Boolean expressions:
– If multiple conditions must all be met before the body will execute. (And)

– If at least one condition must be met before the body will execute. (Or)

• The logical NOT operator can be used to check if something has
‘not’ occurred yet
– E.g., If it’s true that the user did not enter the correct password then the program will end.

Logic: The “OR” Operator

• Format:
If (Boolean expression) OR (Boolean expression) then

body

End if

• Word document containing the macro (empty document, see
macro editor for the important details): 6if_or_hiring.docm
gpa = InputBox("Grade point: ")

experience = InputBox("Years of job experience: ")

If (gpa > 3.7) Or (experience > 5) Then

result = "Hire applicant"

Else

result = "Insufficient qualifications"

11/17/2015

Administrative and course introduction 16

Hiring Example: Example Inputs & Results

GPA Years job experience Result

2 0 Insufficient qualifications

1 10 Hire

4 1 Hire

4 7 Hire

If (gpa > 3.7) Or (experience > 5) then

Logic: The “AND” Operator

• Format:
If (Boolean expression) And (Boolean expression) then

body

End if

• Word document containing the macro (empty document, see
macro editor for the important details): 7if_and_firing.docm
salary = InputBox("Salary: ")

years = InputBox("Years of employment: ")

If (salary >= 100000) And (years < 2) Then

result = "Fired!"

Else

result = "Retained"

11/17/2015

Administrative and course introduction 17

Firing Example: Example Inputs & Results

Salary Years on job Result

1 100 Retained

50000 1 Retained

123456 20 Retained

1000000 0 Fired!

If (salary >= 100000) And (years < 2) Then

Logic: The “NOT” Operator

• Format:
If Not (Boolean Expression) then

body

End if

• Word document containing the macro example:
8checkSave.docm

If Not (ActiveDocument.Saved) Then

MsgBox ("You haven't saved " & ActiveDocument.Name

& " yet")

End If

11/17/2015

Administrative and course introduction 18

Line Continuation Character

• To increase readability long statements can be split over
multiple lines.
If (income > 99999) And _

(experience <= 2) And _

(numRepramands > 0) Then

MsgBox ("You’re fired!")

End If

• To split the line the line continuation character (underscore)
must be preceded by a space.

• Keywords cannot be split between lines e.g.
Msg _

Box

For more details see: http://support.microsoft.com/kb/141513

Line Continuation Character (2)

• Strings split over multiple lines require a combination of the
proper use of the line continuation character '_' and the
concatenation operator '&‘:

MsgBox ("Your " _

& "name")

11/17/2015

Administrative and course introduction 19

What To Do When Multiple Conditions Must Be
Checked

• Case 1: If each condition is independent of other questions
– Multiple if-then expressions can be used

– Example:

– Q1: Are you an adult?

– Q2: Are you a Canadian citizen?

– Q3: Are you currently employed?

What To Do When Multiple Conditions Must Be
Checked (2)

• Case 2 (mutually exclusive): If the result of one condition
affects other conditions (when one condition is true then the
other conditions cannot be true)

– If-then, elseif, else should be used

– Which of the following is your place of birth? (Answering true to one
option makes the options false)

a) Calgary

b) Edmonton

c) Lethbridge

d) Red Deer

e) None of the above

11/17/2015

Administrative and course introduction 20

Decision Making With Multiple If-Then’s

True

Instruction or

instructions

True

Instruction or

instructions

Q2:

Boolean 2

Remainder of

the program

False

False

Each question is independent (previous
answers have no effect on later questions
because all questions will be asked).

Q1: Are you an adult?
Q2: Are you a Canadian citizen?
Q3: Are you currently employed?

Q1:

Boolean 1

Multiple If-Then's

• Any, all or none of the conditions may be true

• Employ when a series of independent questions will be asked

• Format:
if (Boolean expression 1) then

body 1

end if

if (Boolean expression 2) then

body 2

end if

...

statements after the conditions

11/17/2015

Administrative and course introduction 21

Multiple If-Then's (2)

• Word document containing the macro: 9multipleIfs.docm
Sub multipleIf()

' Check if there were any 'comments' added to the document.

If (ActiveDocument.Comments.Count > 0) Then

MsgBox ("Annotations were made in this document")

End If

' A numbered item includes numbered and bulleted lists.

If (ActiveDocument.CountNumberedItems() > 0) Then

MsgBox ("Bullet points or numbered lists used")

End If

End Sub

Multiple If's: Mutually Exclusive Conditions

• At most only one of many conditions can be true
• Can be implemented through multiple if's

• Word document containing the macro (empty document, see macro
editor for the important details): “10gradesInefficient.docm”

Inefficient

combination!

If (grade = 4) Then

letter = "A"

End If

If (grade = 3) Then

letter = "B"

End If

If (grade = 2) Then

letter = "C"

End If

If (grade = 1) Then

letter = "D"

End If

If (grade = 0) Then

letter = "F"

End If

11/17/2015

Administrative and course introduction 22

Decision Making With If-Then, Elseif, Else

Boolean
True Instruction or

instructions

False

Boolean

Remainder of

the program

Instruction or

instructions

False

True Instruction or

instructions

JT’s note: once the first ‘true’ case is
encountered all remaining and
related Boolean expressions (using
‘Elseif’) are skipped

Multiple If-Elif-Else: Use With Mutually
Exclusive Conditions

• Format:
if (Boolean expression 1) then

body 1

elseif (Boolean expression 2) then

body 2

...

else

body n

' Only one ‘end-if’ at very end

end if

statements after the conditions

Mutually exclusive
• One condition evaluating to

true excludes other
conditions from being true

• Example: having your current
location as ‘Calgary’ excludes
the possibility of the current
location as ‘Edmonton’,
‘Toronto’, ‘Medicine Hat’

11/17/2015

Administrative and course introduction 23

If-Elseif-Else: Mutually Exclusive Conditions
(Example)

• Word document containing the macro (empty document, see macro
editor for the important details): “11gradesEfficient.docm”
If (grade = 4) Then

letter = "A"

ElseIf (grade = 3) Then

letter = "B"

ElseIf (grade = 2) Then

letter = "C"

ElseIf (grade = 1) Then

letter = "D"

ElseIf (grade = 0) Then

letter = "F"

Else

letter = "Invalid"

End If

This approach is more

efficient when at most

only one condition can

be true.

Extra benefit:

The body of the else

executes only when all the

Boolean expressions are

false. (Useful for error

checking/handling).

Location Of The “End If”: Multiple If’s

• Independent If-then’s:

– Since each ‘if’ is independent each body must be followed by it’s own
separate ‘end if’

11/17/2015

Administrative and course introduction 24

Location Of The “End If”: If-then, Else

• If-then, Else:
– Since the ‘if-then’ and the ‘else’ are dependent (either one body or

the other must execute) the ‘end if’ must follow the body of the ‘else-
body’ (last dependent “if-branch”)

Document either
does or does not
have enough
words

Location Of The “End If”: If-Then, ElseIf

• Dependent If-then, Else-If:

– Since the results of earlier Boolean expressions determine whether later
ones can be true (reminder: because at most only one can be true) all of
the if-then and Elseif expressions are dependent (one related
block).

– The “end if” belongs at the very end of the block

11/17/2015

Administrative and course introduction 25

VBA: If, Else-If And Excel: Nested-Ifs

• These two concepts are comparable:

VBA:
If (grade = 4) Then

letter = "A"
ElseIf (grade = 3) Then

letter = "B"
ElseIf (grade = 2) Then

letter = "C"
ElseIf (grade = 1) Then

letter = "D"
ElseIf (grade = 0) Then

letter = "F"
Else

letter = "Invalid"
End If

Excel (display different messages for different
grade points e.g. Display “Perfect” if grade
point is 4.0 or greater):

=IF(D2>=4,"Perfect",
IF(D2>=3,"Excellent",
IF(D2>=2,"Adequate",
IF(D2>=1,"Pass",
"Fail"))))

VBA (Programming Language): Nested-IFs

• Similar to the IF, ELSE-IF: Decision making is dependent.

– One branch is ‘nested’ inside of another branch

– The first decision must evaluate to true (“gate keeper”) before successive
decisions are even considered for evaluation.

• Unlike the IF, ELSE-IF more than one case can be true:

Question 1?
True

Question 2?
True Statement or

statements

Remainder of

the program

False
False

11/17/2015

Administrative and course introduction 26

• One decision is made inside another.

• Outer decisions must evaluate to true before inner decisions
are even considered for evaluation.

• Format:
if (Boolean expression) then

if (Boolean expression) then

body

end if

end if
• Both (or all if 2+ IFs) must evaluate to true before the inner-

most body will execute.

Outer body

Nested Decision Making

Inner body

Nested IFs: Simple ‘Toy’ Example

• Word document containing the macro (empty document, see
macro editor for the important details):
“12simpleNesting.docm”

' Suggested inputs
' num1=1, num2=1
' num1=1, num2=0
' num1=0, num2=1

Sub simpleNestingExample()
Dim num1 As Long
Dim num2 As Long
Dim result As String

11/17/2015

Administrative and course introduction 27

Nested IFs: Simple ‘Toy’ Example (2)

num1 = InputBox("Enter a whole number")
num2 = InputBox("Enter a whole number")
If (num1 > 0) Then

result = "Num1 positive - "
If (num2 > 0) Then

result = result & "Num2 positive"
End If

Else
result = "Num1 not positive, didn't bother checking

num2"
End If
MsgBox (result)

End Sub

Nesting: End-If

If (num1 > 0) Then
result = "Num1 positive - "
If (num2 > 0) Then

result = result & "Num2 positive"
End If

Else
result = "Num1 not positive, didn't bother checking

num2"
End If

11/17/2015

Administrative and course introduction 28

Multiple IFs: Distinguishes All Cases

• Word document containing the macro (although you’ve seen
multiple-Ifs this example is include to contrast vs. nesting):
“13nonNestedExample.docm”

' Suggested inputs

' num1=0, num2=1

' num1=1, num2=0

' num1=1, num2=1

' num1=0, num2-0

Sub nonNestedExample()

Dim num1 As Long

Dim num2 As Long

Dim result As String

Multiple IFs: Distinguishes All Cases (2)

num2 = InputBox("Enter a whole number")

If (num1 > 0) Then

result = "Num1 positive - "

End If

If (num2 > 0) Then

result = result & "Num2 positive"

End If

MsgBox (result)

End Sub

11/17/2015

Administrative and course introduction 29

From The Last Section: What If there Is No Selection?

• The VBA program attempts to format the currently selected
text but there is ‘no’ selection.

– What modifications can be made to the program to handle this case?

Selection.Font.Bold = wdToggle

The Selection Object again

• With a previous example if no text was selected then the
program would produce no visible effect.
Sub SelectedFontChange()

Selection.Font.Bold = wdToggle

End

• Another example automatically selected text for you
“expanded” the selection.
Sub AutoSelectedFontChange()

Selection.Expand

Selection.Font.Bold = wdToggle

End Sub

Before After

11/17/2015

Administrative and course introduction 30

Constants For The Selection Object

Name of constant Meaning of constant

wdSelectionIP No text selected

wdSelectionNormal Text (e.g., word, sentence) has
been selected

wdSelectionShape A graphical shape (e.g., circle,
text book) has been selected

The Selection Object And A Practical Application
Of Branching

• An example application of branching: check if a selection has
been made and only apply the selection if that is the case.
– Checking if a condition is true

• Word document containing the macro:
“14selectionExample.docm”
Sub checkSelection()

If Selection.Type = wdSelectionIP Then

MsgBox ("No text selected, nothing to change")

Else

Selection.Font.Bold = wdToggle 'wdToggle, constant

End If

End Sub

11/17/2015

Administrative and course introduction 31

Application Branching: Marking Program

• Word document containing the macro: “15Marking
program.docm”

• Synopsis:
– The program spells checks the document

• Assume each document includes the name of the person in the file name

– If the number of errors meets a cut-off value then it’s a ‘fail’

– Otherwise it’s a pass

– The feedback is ‘written’ to the beginning of the document using a
specific font and several font effects in order to stand out

• The message is customized with the person’s name at the beginning of the
feedback

Marking Program

Sub MarkingForSpelling()
Dim totalTypos As Integer
Const MAX_TYPOS = 30
Dim currentDocument As String
Dim feedback As String

'Get Name of current document
currentDocument = ActiveDocument.Name

'Tally the number of typos
totalTypos = ActiveDocument.SpellingErrors.Count

'Feedback is prefaced by student(document) name
feedback = currentDocument & " marking feedback..."

11/17/2015

Administrative and course introduction 32

Marking Program (2)

' HomeKey move to the home position (start of document)
Selection.HomeKey Unit:=wdStory

'Recall: before this feedback just = document name and
'an indication that feedback is coming
If (totalTypos > MAX_TYPOS) Then

feedback = feedback & ": Too many typographical errors:
Fail"

Else
feedback = feedback & ": Pass"

End If

' Chr(11) adds a newline (enter) to the end of feedback
feedback = feedback & Chr(11) & Chr(11)

' Alternative use the constant vbCr (VB cursor return)

Marking Program (3)

' Font effects to make the feedback stand out
Selection.Font.ColorIndex = wdRed
Selection.Font.Size = 16
Selection.Font.Name = "Times New Roman"

' Write feedback into the document
Selection.TypeText (feedback)

End Sub

11/17/2015

Administrative and course introduction 33

Securing A Document: Using MS-Word

• Documents can be configured so a password is required to
view the contents.

Securing A Document: Simple VBA Example

• Word document containing the macro:
16passwordExample.docm
Sub passWordExample()

Dim yourPassword As String

Dim warningCaps As String

If (Application.CapsLock = True) Then

warningCaps = "Caution: Caps Lock is On!"

Else

warningCaps = ""

End If

yourPassword = InputBox("Password for document: " _

& warningCaps)

ActiveDocument.Password = yourPassword

End Sub

11/17/2015

Administrative and course introduction 34

Looping/Repetition

• How to get the program or portions of the program to
automatically re-run
– Without duplicating the instructions

– Example: you need to calculate tax for multiple people

Ask for income

Calculate deductions

Display amounts

Loop: allows you
to repeat the
same tasks over
and over again

Looping/Repetition (2)

• The entire program repeats

Play again?

Run game

Y

END GAME

N

START

www.colourbox.com

Play game
again?

11/17/2015

Administrative and course introduction 35

Looping/Repetition (3)

• Only a specific part of the program repeats

Re-running specific parts of the program

Invalid input?

Ask for input again

Y

N

…rest of

program

Flowchart

Types Of Loops

• Fixed repetition loops: runs some integer ‘n’ times e.g.,
generates taxes for 10 clients
– For-next

• Variable repetition loops: runs as long as some condition holds
true
– e.g., while the user doesn’t quit the program re-run the program

– e.g., while the user enters an erroneous value ask the user for input.

– Do-while loop

11/17/2015

Administrative and course introduction 36

For-Next Loops

• A ‘counting’ loop: counts out a sequence of numbers

• Format:
For <counter> = <start> To <end> Step <step size>1

<Statement(s)>

Next <counter>

• Complete Example: “17forUpOne.docm”
' Synopsis of code illustrating new concepts

Dim i As Integer

For i = 1 To 4 Step 1

MsgBox ("i=" & i)

Next i

1 Step size can be a positive or negative integer e.g., 1, -1, 5, -10 etc.

For-Next Loops (2)

• For-next loops can count down as well as up

• The Steps can be values other than one.

• Complete example: “18forDownThree.docm”
' Synopsis of code illustrating new concepts

Dim i As Integer

For i = 12 To 0 Step -3

MsgBox ("i=" & i)

Next i

12
9
6
3
0

11/17/2015

Administrative and course introduction 37

Do-While Loop

• Format:
Do While <Condition>

<Statement(s)>

Loop

• Example: “19whileUpOne.docm”
Dim i As Integer

i = 1

Do While (i <= 4)

MsgBox ("i=" & i)

i = i + 1

Loop
Any valid
mathematical
expression
here

Start

Condition
?

Loop

Statements

T

End

F

Programming Style: Variable Names

• In general variable names should be self-descriptive e.g., ‘age’,
‘height’ etc.

• Loop control variables are an exception e.g., ‘i’ is an acceptable
variable name
– It’s sometimes difficult to come up with a decent loop control name

– Loop control variables are given shorter names so the line length of a
loop isn’t excessive

Dim loopControl As Integer

loopControl = 1

Do While (loopControl <= 4)

...

11/17/2015

Administrative and course introduction 38

Loops That Never Execute

• Word document containing the complete program:
20nonExecutingLoops.docm

Dim i As Integer

i = 5
Do While (i <= 4)

MsgBox ("i=" & i)
i = i + 1

Loop

For i = 4 To 1 Step 1
MsgBox ("i=" & i)

Next i

Exercise #1: Loops

• The following program that prompts for and displays the
user’s age.
Sub errorChecking()

Dim age As Long

age = InputBox("Age (greater than or equal to zero)")

End Sub

• Modifications:
– As long as the user enters a negative age the program will continue

prompting for age.

– After a valid age has been entered then stop the prompts and display the
age.

– Hint: Use a do-while loop (not a for-loop)

11/17/2015

Administrative and course introduction 39

Accessing Tables

• The tables in the currently active Word document can be made
through the ActiveDocument object:
– ActiveDocument.Tables: accesses the ‘tables’ collection (all the

tables in the document).

– ActiveDocument.Tables(<integer ‘i’>): accesses table # i in
the document

– ActiveDocument.Tables(1).Sort: sorts the first table in the
document (default is ascending order)

Simple Example: Sorting Three Tables

• Instructions needed for sorting 3 tables

ActiveDocument.Tables(1).Sort

ActiveDocument.Tables(2).Sort

ActiveDocument.Tables(3).Sort

Before After

11/17/2015

Administrative and course introduction 40

Previous Example

• Critique of the previous approach: the program ‘worked’ for
the one document with3 tables but:
– What if there were more tables (cut and paste of the sort instruction is

wasteful)?

– What if the number of tables can change (i.e., user edits the document)

• Notice: The process of sorting just repeats the same action but
on a different table.
ActiveDocument.Tables(1).Sort

ActiveDocument.Tables(2).Sort

ActiveDocument.Tables(3).Sort

• Looping/repetition can be applied reduce the duplicated
statements

Revised Example: Sorting Tables With A Loop

Word document containing the complete macro:
“21sortingTables.docm”
Sub Sort()

Dim CurrentTable As Integer

Dim NumTables As Integer

NumTables = ActiveDocument.Tables.Count

If NumTables = 0 Then

MsgBox ("No tables to sort")

Else

For CurrentTable = 1 To NumTables Step 1

MsgBox ("Sorting Table # " & CurrentTable)

ActiveDocument.Tables(CurrentTable).Sort

Next

End If

End Sub

11/17/2015

Administrative and course introduction 41

Result: Sorting Tables

• Before

• After

More On Sort

• A handy parameter that can be used to configure how it runs.

• Format
Sort (<Boolean to Exclude header – True or False>)

• Example
– ActiveDocument.Tables(CurrentTable).Sort(True)

– Before

– After

11/17/2015

Administrative and course introduction 42

Second Sorting Example: Exclude Headers

• Document containing the macro:
“22sortingTablesExcludeHeader.docm”
Sub Sort()

Dim CurrentTable As Integer

Dim NumTables As Integer

NumTables = ActiveDocument.Tables.Count

If NumTables = 0 Then

' Don't bother sorting

MsgBox ("No tables to sort")

Else

For CurrentTable = 1 To NumTables Step 1

MsgBox ("Sorting Table # " & CurrentTable)

ActiveDocument.Tables(CurrentTable).Sort (True)

Next

End If

End Sub

Before

After

Accessing Shapes And Images

• Reminders (in VBA)

– Shapes (basic shapes that are drawn by Word)

– InlineShapes (images that are created externally and inserted into
Word)

• Both collections accessed via the ActiveDocument object:
– ActiveDocument.Shapes: access to all the shapes in the currently

active Word document

•ActiveDocument.Shapes(<index>): access to shape #i in the document

– ActiveDocument.InlineShapes: access to all the images in the
currently active Word document

•ActiveDocument.InlineShapes(<index>): access to image #i in the
document

11/17/2015

Administrative and course introduction 43

Example: Accessing Shapes And Images

Word document containing the complete macro:
“23accessingImagesFigures.docm”

Dim numImages As Integer
Dim numShapes As Integer

numImages = ActiveDocument.InlineShapes.Count
numShapes = ActiveDocument.Shapes.Count

MsgBox ("Images=" & numImages)
MsgBox ("Simple shapes=" & numShapes)

Example: Accessing Shapes And Images (2)

' Checks expected # images and alters first & third
If (numImages = 4) Then

ActiveDocument.InlineShapes(1).Height = _
ActiveDocument.InlineShapes(1).Height * 2

ActiveDocument.InlineShapes(3).Height = _
ActiveDocument.InlineShapes(3).Height * 2

End If

' Checks expected # shapes, alters 2nd & 6th

' Deletes the first shape
If (numShapes = 6) Then

ActiveDocument.Shapes(2).Width = _
ActiveDocument.Shapes(2).Width * 4

ActiveDocument.Shapes(6).Fill.ForeColor = vbRed
ActiveDocument.Shapes(1).Delete

End If

11/17/2015

Administrative and course introduction 44

Printing: Multiple

• Printing all the documents currently open in MS-Word.
– Take care that you don’t run this macro if you have many documents

open and/or they are very large!

– Word document containing the macro example:
“24multiDocumentPrint.docm”

Sub PrintDocumentsCollection()

Dim numDocuments As Integer

Dim count As Integer

numDocuments = Documents.count

count = 1

Do While (count <= numDocuments)

Documents.Item(count).PrintOut

count = count + 1

Loop

End Sub

Learning: another
practical application
of looping e.g.,
automatically open
multiple documents,
make changes, print
and save them
without user action
needed

Nesting

• Nesting: one construct is contained within another

– What you have seen: nested branches:

If (Boolean) then

If (Boolean) then

End If

End if

• Branches and loops can be nested within each other
Do while (Boolean)

if (Boolean) then

End if

Loop

11/17/2015

Administrative and course introduction 45

Example: Nesting

1. Write a program that will count out all the numbers from one
to six.

2. For each of the numbers in this sequence the program will
determine if the current count (1 – 6) is odd or even.

a) The program display the value of the current count as well an indication
whether it is odd or even.

• Which Step (#1 or #2) should be completed first?

Step #1 Completed: Now What?

• For each number in the sequence determine if it is odd or
even.

• This can be done with the modulo (remainder) operator: MOD
– An even number modulo 2 equals zero (2, 4, 6 etc. even divide into 2 and

yield a remainder or modulo of zero).

– If (counter MOD 2 = 0) then 'Even

– An odd number modulo 2 does not equal zero (1, 3, 5, etc.)

• Pseudo code visualization of the problem
Loop to count from 1 to 6

Determine if number is odd/even and display message

End Loop

– Determining whether a number is odd/even is a part of counting through
the sequence from 1 – 6, checking odd/even is nested within the loop

11/17/2015

Administrative and course introduction 46

The DIR Function

• It can be used to go through all the documents in a folder (this
course will illustrate in advanced examples)

• It can be used to go through the entire contents of a folder
including sub-folders and sub-sub folders (very advanced use:
well beyond the scope of the this course)

• Basic use: this function takes a location (e.g., C:\temp\) and a
filename as an argument and it determines if the file exists at
the specified location.
– If the file is found at this location then the function returns the name of

the file.

– If the file is not found at this location then the function returns an empty
string (zero length)

Simple Use Of The DIR Function

• Word document containing the macro example:
25DIRFunctionSimple.docm

Dim location As String
Dim filename As String
Dim result As String
location = "C:\temp\" 'Always look here

filename = "Doc1.docx" 'C:\temp\Doc1.dox
result = Dir(location & filename)
MsgBox (result)

result = Dir(location & "*.docx") 'Any .docx in C:\temp\
MsgBox (result)

filename = InputBox("File name in C:\temp")
result = Dir(location & filename)
MsgBox (result)

11/17/2015

Administrative and course introduction 47

Example: Using Dir To Check If File Exists (2)

• Word document containing the macro example:
26DIRFunctionIntermediate.docm
Sub openExistingDocument()

Dim filename As String

Dim checkIfExists As String

Dim last As Integer

filename = InputBox ("Enter the path and name of file to

open e.g., 'C:\temp\tam.docx'")

' Error case: nothing to open, user entered no info

If (filename = "") Then

ActiveDocument.ActiveWindow.Caption =

"No such file in this location"

Example: Using Dir To Check If File Exists (3)

' No error: non-empty info entered

Else

checkIfExists = Dir(filename)

If (Len(checkIfExists) = 0) Then

MsgBox ("File doesn't exist can't open")

Else

MsgBox ("File exists opening")

Documents.Open (filename)

End If

End If

End Sub

11/17/2015

Administrative and course introduction 48

Practical Use Of Dir: Access Each File In A Directory

• Word document containing the macro example:
27loopFolder.docm

Sub loopFolder ()
Dim directoryPath As String
Dim currentFile As String
directoryPath = InputBox("Enter full path of search

folder e.g. C:\Temp\")
currentFile = Dir(directoryPath)
If (currentFile = "") Then

MsgBox ("No documents in the specified folder")
End If
Do While (currentFile <> "")

MsgBox (currentFile) ' Display file name in popup
currentFile = Dir

Loop
End Sub

Alternate Version: Access Only Word Documents

• Word document containing the macro example:
28loopWordFolder.docm

Sub loopWordFolder()
Dim directoryPath As String
Dim currentFile As String
directoryPath = InputBox("Enter full path of search
folder")

currentFile = Dir(directoryPath & "*.doc*")
If (currentFile = "") Then

MsgBox ("No documents in the specified folder")
End If
Do While (currentFile <> "")

MsgBox (currentFile) ' Display file name in popup
currentFile = Dir ' Move onto next document in folder

Loop
End Sub

11/17/2015

Administrative and course introduction 49

Revision Of An Earlier Example

• The original version only marked (and annotated at the top) a
single document.

• This new version will automatically mark all the documents in a
user-specified folder and insert the marking information at the
top of each document.

• Details:
– Open each document in the folder

– Run a spell check of the document

– Based on the number of spelling mistakes the document will be marked
as either a pass or fail

– The comments will be inserted at the top of the document

– The marked document is then automatically closed and the program
moves onto the next document until there are no more documents in
that folder.

Revised Marking Program

• Word document containing the macro:
“29markAllFolderDocuments.docm”

Sub markAllFolderDocuments()

Const MAX_TYPOS = 1

Const LARGER_FONT = 14

Dim directoryPath As String

Dim currentFile As String

Dim totalTypos As Integer

Dim feedback As String

11/17/2015

Administrative and course introduction 50

Revised Marking Program (2)

directoryPath = InputBox("Location and name of folder
containing assignments (e.g., C:\grades\")

currentFile = Dir(directoryPath & "*.doc*")

If (directoryPath = "") Then
MsgBox ("No Word documents in specified folder,

looking in default location C:\Temp\")
directoryPath = "C:\Temp\"

End If

Revised Marking Program (3)

Do While (currentFile <> "")
Documents.Open (directoryPath & currentFile)
currentDocument = ActiveDocument.Name
totalTypos = ActiveDocument.SpellingErrors.Count
feedback = currentDocument & " marking feedback..."
Selection.HomeKey Unit:=wdStory
If (totalTypos > MAX_TYPOS) Then

feedback = feedback & ": Too many typographical
errors: Fail"

Else
feedback = feedback & ": Pass"

End If
feedback = feedback & vbCr
Selection.Text = feedback
' Loop body continued on next page

e.g. Feedback for
“Typos.docx” = “Typos
marking feedback…”

e.g. Feedback for
“Typos.docx” =
“typos.doc marking
feedback...: Too many
typographical errors:
Fail”

11/17/2015

Administrative and course introduction 51

Revised Marking Program (4)

' Loop body continued from previous page
With Selection.Font

.Bold = True

.Size = LARGER_FONT

.Color = wdColorRed
End With
ActiveDocument.Close (wdSaveChanges)
currentFile = Dir

Loop
End Sub

Counting The Number Of Occurrences Of A Word

• Example applications:

– Evaluating resumes by matching skills sought vs. skills listed by the
applicant.

– Ranking the relevance of a paper vs. a search topic by the number of
times that the topic is mentioned.

• Complete Word document containing the macro: 30counting
occurences.docm

11/17/2015

Administrative and course introduction 52

Example: Counting Occurrences

Sub countingOccurences()
Dim count As Long
Dim searchWord As String
count = 0
searchWord = InputBox("Word to search for")

' Exact match (assignment)
With ActiveDocument.Content.Find

Do While .Execute(FindText:=searchWord, Forward:=True, _
MatchWholeWord:=True) = True
count = count + 1

Loop
End With
MsgBox ("Exact matches " & count)

End Sub

Applying Many Of The Previous Concepts In A Practical
Example & Linking Documents And (If There’s Time)

• As you are aware different programs serve different purposes:

– Database: storing and retrieving information

– Spreadsheet: performing calculations, displaying graphical views of
results

– Word processor: creating text documents with many features for
formatting and laying out text

• VBA allows the output of one program to become the input of
another program.
– Although this can be done ‘manually’ (reading the documents and typing

in changes) if the dataset is large this can be a tedious and error-prone
process

– VBA can be used to automate the process

11/17/2015

Administrative and course introduction 53

Example Problem

• Financial statements (monetary data) about many companies
can be stored in a spreadsheet where an analysis can be
performed e.g. does the company have enough $$$ on hand to
meet its financial commitments.

• This information can be read into a VBA program which can
further evaluate the data.

• The results can be presented in Word using the numerous text
formatting features to highlight pertinent financial
information.

• Names of the documents used in this example:
– FNCE.xlsx (contains the financial data: program input)

– 31spreadSheetAnalyzer.docm (contains the VBA program as well as
the presentation of results: program output)

Spread Sheet Analyzer

Sub spreadsheetAnalyzer()
Const MIN_INCOME = 250
Const MIN_RATIO = 25

Const PERCENT = 100
Dim company1 As String
Dim income1 As Long
Dim ratio1 As Long
Dim company2 As String
Dim income2 As Long
Dim ratio2 As Long
Dim company3 As String
Dim income3 As Long
Dim ratio3 As Long
Dim comment1 As String
Dim comment2 As String
Dim comment3 As String

TAMCO: 33%

HAL: Net income $250

PEAR COMPUTER: Net income $9000, 901% <== BUY THIS!

11/17/2015

Administrative and course introduction 54

Spread Sheet Analyzer (2)

Dim excel As Object

Set excel = CreateObject("excel.application")

excel.Visible = True

Dim workbook

Dim location As String

location = InputBox("Path and name of spreadsheet e.g.

C:\Temp\FNCE.xlsx")

Set workbook = excel.workbooks.Open(location)

Object =
Type for any MS-Office variable
https://msdn.microsoft.com/

Spread Sheet Analyzer (2)

Dim excel As Object

Set excel = CreateObject("excel.application")

excel.Visible = True

Dim workbook

Dim location As String

location = InputBox("Path and name of spreadsheet e.g.

C:\Temp\FNCE.xlsx")

Set workbook = excel.workbooks.Open(location)

Object =
Type for any MS-Office variable
https://msdn.microsoft.com/

11/17/2015

Administrative and course introduction 55

Spread Sheet Analyzer (3)

' Get company names

company1 = excel.Range("A1").Value

company2 = excel.Range("A5").Value

company3 = excel.Range("A9").Value

' Get net income and ratio

income1 = excel.Range("C3").Value

ratio1 = excel.Range("D3").Value * PERCENT

income2 = excel.Range("C7").Value

ratio2 = excel.Range("D7").Value * PERCENT

income3 = excel.Range("C11").Value

ratio3 = excel.Range("D11").Value * PERCENT

' Move the selection to the top of the Word document

Selection.HomeKey Unit:=wdStory

Spread Sheet Analyzer (4): First Company

comment1 = company1 & ": "
If (income1 >= MIN_INCOME) Then

comment1 = comment1 & "Net income $" & income1
Selection.Font.Color = wdColorRed
Selection.TypeText (comment1)
If (ratio1 >= MIN_RATIO) Then

comment1 = ", " & ratio1 & "% <== BUY THIS!"
Selection.Font.Color = wdColorBlue
Selection.TypeText (comment1)

End If
Selection.TypeText (vbCr)

Else
If (ratio1 >= MIN_RATIO) Then

comment1 = comment1 & ratio1 & "%" & vbCr
Selection.Font.Color = wdColorBlue
Selection.TypeText (comment1)

End If
End If

TAMCO: 33%

11/17/2015

Administrative and course introduction 56

Spread Sheet Analyzer (5): Second Company

comment2 = company2 & ": "
If (income2 >= MIN_INCOME) Then

comment2 = comment2 & "Net income $" & income2
Selection.Font.Color = wdColorRed
Selection.TypeText (comment2)
If (ratio2 >= MIN_RATIO) Then

comment2 = ", " & ratio2 & "% <== BUY THIS!"
Selection.Font.Color = wdColorBlue
Selection.TypeText (comment2)

End If
Selection.TypeText (vbCr)

Else
If (ratio2 >= MIN_RATIO) Then

comment2 = comment2 & ratio2 & "%" & vbCr
Selection.Font.Color = wdColorBlue
Selection.TypeText (comment2)

End If
End If

HAL: Net income $250

Spread Sheet Analyzer (6): Third Company

comment2 = company2 & ": "
If (income2 >= MIN_INCOME) Then

comment2 = comment2 & "Net income $" & income2
Selection.Font.Color = wdColorRed
Selection.TypeText (comment2)
If (ratio2 >= MIN_RATIO) Then

comment2 = ", " & ratio2 & "% <== BUY THIS!"
Selection.Font.Color = wdColorBlue
Selection.TypeText (comment2)

End If
Selection.TypeText (vbCr)

Else
If (ratio2 >= MIN_RATIO) Then

comment2 = comment2 & ratio2 & "%" & vbCr
Selection.Font.Color = wdColorBlue
Selection.TypeText (comment2)

End If
End If

PEAR COMPUTER: Net income $9000, 901% <== BUY THIS!

11/17/2015

Administrative and course introduction 57

After This Section You Should Now Know

• Collections
– What are they

– What is the advantage in using them

– Common examples found in Word documents

• The Active document
– What are some of the commonly accessed attributes

– What are some useful methods

• Finding things using macros
– How to find and replace: text, font effects or font styles

• Using the end-with

After This Section You Should Now Know (2)

• How to use branches to make decisions in VBA

– If

– If-else

– Multiple If’s

– If, else-if, else

– Nested branches

– Using logic (AND, OR, NOT) in branches

• How to use the line continuation character to break up long
instructions

• How to get a program to repeat one or more instructions using
loops
– For-next

– Do-while

11/17/2015

Administrative and course introduction 58

After This Section You Should Now Know (3)

• How to print multiple documents

• How to use the ‘Dir’ function to access a folder
– Using this function to step through all the documents or specific types of

documents in a folder

• Accessing other types of MS-Office programs with an VBA
program written for Word

Copyright Notice

• Unless otherwise specified, all images were produced by the
author (James Tam).

