Spreadsheets

You will learn about some important features of spreadsheets, as well as a few principles for designing and representing information.

Online MS-Office information source:
https://support.office.com/

Background

- Electronic spreadsheets evolved out of paper worksheets.

- Calculations were manually calculated and entered in columns and rows on paper often drawn with grids.
- Making changes could be awkward:
- Correcting errors
- Attempting variations:
- e.g., for a personal budget what would be the effect of living in a 1 bedroom vs. 2 bedroom apartment
- e.g., going on a vacation to Vulcan, Alberta vs. going to Dubai, U.A.E.
- e.g., how would my term grade change if I received a " B " vs. " $B+$ " on the final exam

The First Spreadsheet

VISICALC for the Apple II computer: Image from:
http://www.cultofmac.com (last accessed Jan 2015)

- Early versions of electronic spreadsheets were primitive but could still automate calculations.
- So popular Visicalc was "The software tail that wags (and sells) the personal computer dog." - Ben Rosen (Compaq)

Getting Started: Creating A New Blank SpreadSheet

 (Excel: "Workbook")- Starting from Windows 7 (Similar to starting other programs):
- Start button->All programs->Microsoft Office->Microsoft Excel
- Once Excel started, creating a new sheet:

Search for online templates
Suggested scorches: Business Personal Industy Small Business Calkulator
Finance-Accounting Litts

Templates

- Pre-created spreadsheets for many types of problems

Spreadsheets 101

Worksheets

- Each spreadsheet can consist of multiple worksheets.

When To Use Multiple Worksheets

- Rules of thumb:
- When there are multiple sheets of related information, each group of information can be stored in it's own worksheet (self contained)

When Not To Use Multiple Worksheets

- If the information consists of groups of unrelated information then the information about each group should be stored in a separate spreadsheet/workbook rather than implementing it a spreadsheet with multiple worksheets.

Grades for mom (spreadsheet)	Expenses for the family business (spreadsheet)

Referring To Other Worksheets

- One worksheet can refer to information stored in another worksheet.
- Name of example spreadsheet:
- 1_multiple_worksheet_example

References Between Spreadsheets

- In a fashion similar to using multiple worksheets, one spreadsheet can refer to information stored in another spreadsheet.
- Name of example spreadsheets:
- 2A_multiple_spreadsheet_example
- 2B_multiple_spreadsheet_example

Lecture Exercise \#1: Cross References Between Multiple Worksheets

Why Use Cross References?

- A typical reason why one worksheet may refer to another or one spreadsheet may refer to another is that the second worksheet or spreadsheet contains data that needs to be "looked up" (e.g., a lookup table)
- Examples where cross reference lookups may be needed:
- Grade cutoffs
- Tax brackets
- Product numbers (lookup a product number to get more information about the product)

The Excel Ribbon

- Tabs are used to group related functions

High Level View Of Each Tab

- File ${ }^{* *}$:
- Functions associated with documents (creating, opening, saving, printing etc.)
- Home (default) ${ }^{* *}$:
- Many of the most commonly used functions (such as formatting fonts, cells and numerical data)
- Insert:
- Tables, illustrations, apps, charts, graphs, text, and symbols
- Page layout:
- Page setup (many similar to print options)
- Formulas *:

- Location and groupings of the pre-created built-in mathematical formulas

High Level View Of Each Tab (2)

- Data:
- Arranging, organizing existing data (e.g., sort)
- Review:

- Spell checking, thesaurus, translation, adding comments, and change tracking
- View (different views of the same data):
- Workbook Views, Show, Zoom, Window, and Macros

"Freezing" Panes: How/Why

- Often used to lock the view so that crucial labels always stay onscreen regardless of which part of the sheet you are viewing

Freezing Panes: Effect On Example Spreadsheet

Customizing The Ribbon

- Select the "File" Ribbon and then "options"
- File -> Options

Saving Work

- This feature is implemented in a similar fashion among the different MS-Office products
- "Save": save document under current name
- "Save as": allows the document to be saved under a different name
- But additional information such as: 'tags' and 'titles' may be entered

Example Using Tags

- Separate from the file name but may still be used as search criteria

Entering Data

- Click on cell to enter the data

(4) - m =				
	A1		- $-\times \checkmark f_{x}$	
4		A	B	c
1			Term percent	Letter
2	111		75	B

- Type in cell contents

A1		- $-\times \checkmark f_{x}$		Student
4	A	B	C	
1	Student	Term percent	Letter	
2	111	75	B	

Contents Of A Cell: Types

- Raw data: also referred to as 'constants'

- Labels: describe the contents of another cell

B1		-	f_{x}	Term percent
4	A	B	C	D
1	Student	Term percent	Letter	
2	111	75	B	

- Formula: values derived from the raw data (e.g., calculations, lookup values)

ADDRESS		- $-\times \checkmark f_{x}$		=VLOOKUP(
4	A	B	C	D
1	Student	Term percent	Letter	
2	111	75	=VLOOKUP	

Specifying Formulas

- In Excel all formulas must be preceded by the '=' symbol to distinguish it from a label
- Label
$2+2$

- Formula
= $2+2$

Basic Mathematical Operators

Mathematical operation	Excel operator	Example
Assignment	=	$=888$
Addition	-	$=2+2$
Subtraction	$*$	$=7-2$
Multiplication	$/$	$=3^{*} 3$
Division	\wedge	$=3 / 4$
Exponent		$=3^{\wedge} 2$

Autofill

- Allows for a series (constant or addition by a constant amount) to be extended
- E.g., The series "1, 2, 3" (can be extended to include "...4, 5, 6")
- Steps:

1. Highlight the cells containing the series to extend (selecting one cell just repeats the contents of that one cell).

2. Move the mouse pointer to the 'handle' at the bottom right

Autofill (2)

3. Drag the mouse as far down as you wish the series to be extended to.

Label Formulas

- Similar to data unless the formula is very obvious to the reader of the spreadsheet (and not the author) label all parts.
- Most of the time it won't be obvious so label most everything.

Previous Example: Explicitly Labeled Formulas

- Whenever possible label the different parts of a calculation to make easier for the reader to interpret and understand how your calculations work.

B8		-	f_{x}	$=B 2-(B 3+B 4+B 5+B 6)$			\approx
잴 spreadsheet budget example.xlsx							
S	A	B	C	D	E	F	G
-1		January	February	March			
2	Paycheck	6000	6000	6000			
3	Rent	2000	2000	2000			
4	Food	1000	1000	1000			
5	Car	1000	1000	1000			
6	Fun	1500	100	1000			
7							
8	Savings	500	1900	1000			
Ready							

Designing Spreadsheets: Rules Of Thumb

1. Do not directly enter values as data that can be derived from other values (calculation example)

- Example
- Assignment grade (assume one assignment) $=4.2$ (data in cell A2)
- Exam grade (assume only one exam) $=3.3$ (data in cell B2)
- Term grade point $=(A 2 * 0.4)+(B 2 * 0.6)$ OR enter 3.66 ?

Designing Spreadsheets: Rules Of Thumb (2)

1. Do not directly enter values as data that can be derived from other values (data example, preview of 8_extracting_connecting_text)

Designing Spreadsheets: Rules Of Thumb (3)

2. Label information so it can be clearly understood

Assignment	Exam	Term grade
grade point	grade point point	
4.2	3.3	3.66

Designing Spreadsheets: Rules Of Thumb (4)

3. Never enter the same information more than once

- Advantages: reduces size and complexity of the sheet, making changes can be easier.
- Seems obvious? Not always
- Example: What if the previous spreadsheet were used to calculate the grades for a class full of students?
- Some would create the sheet this way: $=(\mathrm{B} 2 * 0.4)+(\mathrm{C} 2 * 0.6)$

- spreadsheet example name: 3_grades_formulas

Designing Spreadsheets: Rules Of Thumb (5)

- Issues:
- Clarity: What does the $0.4 \& 0.6$ refer to (sometimes not so obvious)?
- Making changes: What if the value of each component (40\% assignments, 60% exams) changed?

Lookup Tables

- As the name implies it contains information that needs to be referred to ("looked up") in a part of the spreadsheet.
- Can be used to address some of the issues related to the previous example:
- Clarity
- Entering the same data multiple times
$=(\mathrm{B} 2 * \mathrm{G} 2)+(\mathrm{C} 2 * \mathrm{G} 3)$

Mathematical Functions

- As mentioned calculations must be preceded with an equals sign (actually an assignment operator) e.g., $=2 * 2$
- The formula can either be directly entered (custom formula) or you can use one of the pre-created ones that come built into the spreadsheet.
- Example:

- spreadsheet example name: 4_grades_lookup

Order Of Operation

Level	Operation	Symbol		
1	Brackets (inner before outer)	()		
2	Exponent	\wedge		
3	Multiplication, Division	$*$	$\quad /$	(
:---				

- When a series of operators from same level are encountered in a cell the expression is evaluated from in order in which they appear (left to right).
$2+3$ * 3 Equals 11
$8 / 2$ ^ 2 Equals 2

Formatting Cells

- Excel provides the ability to format the spreadsheet in various locations of the ribbon.
- You also can access these functions in the context of a cell or cells in the spreadsheet.

1. Select a cell or cells for which you wish to apply similar formatting effects.

750000	75000	$1 C$
1000000	100000	14
2000000	200000	2ε
3000000	300000	42
4000000	400000	57

2. Right click and select "Format Cells"
of Cut
瞍 Copy
Paste Options: $\stackrel{\square}{\square}$
Paste Special...
Insert...
Delete...
Clear Contents
2 2uick Analysis Filter
Sort
17 Insert Comment
Format Cells...
Pick From Drop-down List...
Define Name...
Hyperlink...

Formatting Cells (2)

Formatting Cells (3)

- Currency:
- Currency sign
- Several options for displaying negative numbers
- Columns aligns decimal points
- Accounting:
- Similar to currency but no special options for displaying negative values
- Date, Time:
- Both allow display in different formats
- Percentage: \%
- Fraction: /

Formatting Cells (3)

- Scientific:
- Text:
- Treats everything (even numbers) as text
- Cell is displayed exactly as entered.
- Special:
- Country specific information (zip)
- Custom:

Pre-Created Excel Formulas

Function Library

SUM
AVERAGE
IF
HYPERLINK
COUNT
MAX
SIN
SUMIF
PMT
STDEV
$f x$
Insert Function...

What Function Is Right For Your Situation?

- Excel provides reminders.
- Recall the location of built in functions.

- Also Excel provides "name completion"

Basic Statistics

- Name of example spreadsheet:
-5_basic_statistics
- Example formulas: sum(), average(), min(), max()
- General usage:
- Each formula requires as input a series of numbers
- E.g., formula(1,2,3):
- Sum = $6 \quad, \quad=\operatorname{sum}(1,2,3)$
-Average = 2 , =average $(1,2,3)$
- $\operatorname{Min}=1 \quad, \quad=\min (1,2,3)$
- $\operatorname{Max}=3 \quad, \quad=\max (1,2,3)$

Basic Statistics (2)

- The series of numbers can allow refer to a range of cells formula(<start cell> : <end cell>)

-	A	B	C	
1		Sales		
2			Sunridge	
3		Manager	\$100,000.00	
4		Assistant	\$50,000.00	
5		Employee1	\$50,000.00	
6		Employee 2		
7		Employee3		
8				
9		Store: total sales	\$200,000.00	=SUM (C3:C7)
10		Store averages	\$66,666.67	=AVERAGE(C3:C7)
11		Store: highest	\$100,000.00	= MAX (C3:C7)
12		Store: lowest	\$50,000.00	$=\operatorname{MIN}(\mathrm{C3:C7)}$

Basic Statistics (3)

- Ranges can span multiple rows and columns

Counting Functions

- All of these functions tally up the number of cells that do or do not contain a certain type of data e.g., numbers
- General usage (all these formulas will require this information although one requires additional data).
function(<start cell range> : <end cell range>)
- An array (list) of numbers can be the function argument but this is rare e.g., $=\operatorname{COUNT}(1$, "A" , 2)
- Name of example spreadsheet:
-6_counting_functions

Counting Functions: Count ()

- Counts the number of cells within the specified range that contain numbers
- https://support.office.com/en-US/article/COUNT-function-A59CD7FC-B623-4D93-87A4-D23BF411294C

	Col C
13	0
14	2
15	$\mathrm{~A}^{\prime \prime}$
16	
COUNT	=COUNT(C13:C16)

Counting Functions: Counta ()

- Counta()
- Counts the number of cells within the specified range that aren't empty
- https://support.office.com/en-US/article/COUNTA-function-7DC98875-D5C1-46F1-9A82-53F3219E2509

	Col C
13	0
14	2
15	"A"
16	
COUNTA	$=$ =COUNTA(C13:C16)

Counting Functions: Countblank ()

- Countblank()
- Counts the number of empty cells within the specified range
- https://support.office.com/en-US/article/COUNTBLANK-function-6A92D772-675C-4BEE-B346-24AF6BD3AC22

	Col C
13	0
14	2
15	"A"
16	
COUNTBLANK	=COUNTBLANK(C13:C16)

String

- A series of characters which include alphabetic characters, numeric digits and special characters such as space, punctuation or other symbols (\#,\$...).
- String is another name for text

Excel String Functions

- Functions that act on strings
- Converting or changing alphabetic text
- Change text from one form to another
- lower(), upper(), proper()
- Processing text
- Remove spaces
- Trim()
- Connecting text:
- connecting a string or a part of that string with another string e.g. title with surname or first name
- concatenate()
- Extract selected portions of text:
- A specific number of characters from some position are to be extracted from a string e.g., area code or country code from a phone number
- find(), left(), right(), mid()

Functions That Convert Text

- Name of example spreadsheet:
"7_converting_text"
- lower()
- Converts non-lower case alphabetic characters to lower case
- https://support.office.com/en-US/article/LOWER-function-3F21DF02-A80C-44B2-AFAF-81358F9FDEB4
- upper()
- Converts non-upper case alphabetic characters to upper case
- https://support.office.com/en-US/article/UPPER-function-C11F29B3-D1A3-4537-8DF6-04D0049963D6
- proper()
- For alphabetic text it converts the letters to 'proper' format:
- All letters are lower case except for the first letter of each word (which is capitalized)
- https://support.office.com/en-US/article/PROPER-function-52A5A283-E8B2-49BE-8506-B2887B889F94

Functions For Extracting And Connecting Text

- Name of example spreadsheet:
"8_extracting_connecting_text"
- trim():
- Removes leading or trailing spaces (ignores single spaces within text)
- Format: trim(<string>)
- Examples:
- Trim(" james ")
- Trim("a b ")
- https://support.office.com/en-US/article/TRIM-function-410388FA-C5DF-49C6-B16C-9E5630B479F9
- concatenate():
- Connects two or more strings
- Format: concatenate(string1, string2...)
- A string can be fixed e.g., concatenate("wa","sup") or the address of a cell e.g., concatenate(A1,"!")
- https://support.office.com/en-US/article/CONCATENATE-function-8F8AE884-2CA8-4F7A-B093-75D702BEA31D

Functions For Extracting And Connecting Text (2)

- left():
- Extracts the specified number of characters from the left side of the specified string.
- Format: left(<string>, <length>)
- String: the source string to extra characters from
- Length: the number of characters to extract
- https://support.office.com/en-US/article/Left-Function-D5897BF6-91F5-4BF8-853A-B63D7DE09681
- Examples:
=left("Foo bar",2)
=left("Foo bar",0)
=LEFT("Foo",10)

Functions For Extracting And Connecting Text (3)

- right():
- Extracts the specified number of characters from the right side of the string
- Format:right(<string>, <Length>)
- https://support.office.com/en-US/article/Right-Function-C02A18A8-B224-437E-AABA-1B785C6C61BF
- Examples:
=RIGHT("Foo!bar",2) =RIGHT("Foo",10)

Functions For Extracting And Connecting Text (4)

- mid():
- Starting at the specified position, the function extracts the specified number of characters from the string
- Format: left(<string>, <start>, <length>)
- String: the source string to extra characters from
- Start: the position in the string in which extraction should begin
- Length: the length of the sub-string to extract (sub-string begins at the position specified with the 'start' argument)
- https://support.office.com/en-US/article/Mid-Function-427E6895-822C-44EE-B34A-564A28F2532C
- Examples:
=MID("not too hot",2,4)
=MID("not too hot",8,55)
=MID("not too hot",0,5)
=MID("not too hot",7,0)

Functions For Extracting And Connecting Text (5)

- find():
- Finds the starting position of one string within another string
- Format:
- find(<find text>, <within text>, [<start position>])
- Find text: search for the first occurrence of the find text within the within text
- Within text: the string on which the search is performed
- Start number (optional): the position of the 'within text' that you want the search to being
- https://support.office.com/en-US/article/FIND-function-06213F91-B5BE-4544-8B0B-2FD5A775436F
- Examples:
- =FIND("me", "james")
- =FIND("la","fa-la-la-la-la")
- =FIND("la","fa-la-la-la-la",6)
- =FIND("x","XYZ")

Combinations: Find(), Mid()

- The return value of one function can be used as the argument of another function.
- Consider this example
- Cell A10 contains the string "Apt \#709, 944 Dallas Dr. Nw"
- You wish to extract the apartment number information \#ddd into a substring
- Assume that apartment numbers are always preceded by the number sign \#
- Also you assume that apartment numbers are three digits in length
- You cannot make assumptions about the information that precedes the number sign (zero to 'infinity')
- Find() can be use to determine the start location of the apartment in the string
-FIND("\#",A10)
- The start position of the apartment information can be used as one of the arguments for an extraction function

Combinations: Find(), Mid(): 2

$-=\operatorname{MID}\left(\mathrm{A} 10, \downarrow^{5}, 4\right)$

- But you can't always assume that the apartment information begins at position five.
-"Apt \#709, 944 Dallas Dr. NW"
-"\#123, 4944 Dalton Dr NW"
- So the return value from find() must be used to first determine the location of the apartment information.

- Next this information is used as one of the arguments for the mid (), string extraction function.
-All together: "=MID(A10, FIND("\#", A10), 4)"

Why Bother?

- When would you ever use Excel functions this way?
- Sometimes the data has already been entered into the sheet
- Data may combine fields or include extraneous information:
- 403-123-4567 (postal code and phone number combined, dash)
- (403)111-2222 (as above but adds additional brackets)

1. Labor saving

- Retyping a large dataset may be time consuming
- Solve the problem once and then reuse (copy and paste) the trimming formula wherever else it is needed

```
SUM * : X ` fx}=\mathrm{ =MID(G2, 2, FIND(")",G2)-2)
                                    H
    Phone Area code
    (403)210-9455 =MID(G2, 2, FIND(")",G2)-2)
    3 (123)456-7890
    4 (604)604-6040
```


Why Bother? (2)

2. Different views of the same data may be needed (from an earlier example sheet)

A		B		C	
1	Title	First name	Last name	Phone	
2	Ms.	James	Tam	$(403) 210-9455$	
3	Mr.	Robert	Thurston	$(702) 333-33333$	
4	Dr.	Jane	Jones	$(614) 123-4567$	
5	Prof.	Allison	Smith	$(123) 456-7890$	

- In Canada the proper greeting will be "Dr. Jones"
$=$ CONCATENATE (A2, C2)

- In other countries the proper greeting will be "Dr. Harry"
$=$ CONCATENATE (A2, B2)

Why Bother? (3)

3. It may useful to be familiar with these functions for the future!

- Job interviews, the exams, the bonus feature of A2 ;)

Lecture Exercise \#2: String Functions

Lecture Exercise \#3: String Functions (If There Is Time)

Date And Time Functions

- Name of example spreadsheet:
"9_date_time"
- today()
- Displays the current date (month/day/year) e.g., 07/15/2015
- now()
- Displays the current date (as above) and time (hour/minute with a 24 hour clock) e.g., 18:42
- Both: determine the time/date based on the settings of the computer on which the worksheet is run.
- Updates occur when the files is opened or when the spreadsheet recalculates new values.

- Function returns one value if a condition has been met.
- "If condition met do an action"
- Function can return another value if the condition hasn't been met.
- "Else if the condition not met do another action"
- Boolean (logic): either true or false that the condition was met

Applying Branches: Grade Example

- In column ' E ' the sheet will display "Pass" if term grade point is 1.0 or greater "Fail" otherwise.
- spreadsheet example name: 10_if_else_pass_fail

Format: If-Else

- Format:
=if (<condition to check>, <return value: condition true>, <return value: condition false>)
- Example:
=IF(D2>=3, "Pass", "Fail")
- Note: the return value is not limited only to text
- https://support.office.com/en-US/article/IF-function-69aed7c9-4e8a-4755-a9bc-aa8bbff73be2?Correlationld=6aeb3056-a94b-47ac-af6e-90dff250a029

Comparators

Math	Excel	Meaning
$<$	$<$	Less than
$>$	$>$	Greater than
$=$	$<=$	Equal to
\leq	$>=$	Less than, equal to
\geq	$<>$	Greater than, equal to
\neq		Not equal to

If: Specifying Only The True Case

- If only a return value for the true case has been specified:
- When the condition has not been met (false that the condition has been met) i.e., "Has the student passed the course?"...literally the text "FALSE" will be displayed.
- No spreadsheet example has been provided because this implementation is incorrect
- To see the result you can edit the previous sheet and just delete the false case "Fail" message ('Column E' data).

If: Specifying Only The True Case (2)

- Consequently:
- Even if a specific return value is desired only for the 'if condition case' (true that the condition has been met)
- Something, even an empty message, should be specified for the 'else case' (false that the condition has been met).
- Previous example: amended
- spreadsheet example name: 11_if_pass_only

Nested Conditions

- Conditions that are dependent upon or are affected by previous conditions.
- 'Nesting' refers to conditions that are 'inside of other conditions'
- Example (assume that the respondent previously indicated that his or her birthplace was an Alberta city)
- Select the AB city in which you were born

1. Airdrie
2. Calgary
3. Edmonton

- Selecting Airdrie excludes the possibility of selecting Calgary
- Cities listed later are 'nested' in earlier selections)

Nested Conditions (2)

- Applies when different conditions must be checked but at most only one applies (exactly 0 or 1 conditions can be true)
- Example:
- Display "Perfect" if grade point is 4.0 or greater
- Display "Excellent" if grade point is 3.0 or greater but less than 4.0
- Display "Adequate" if grade point is 2.0 or greater but less than 3.0
- Display "Pass" if grade point is 1.0 or greater but less than 2.0
- Otherwise display "Fail"
- Spreadsheet example name: 12_nested_if_grades

Previous Grade Example: Specifying Conditions

Nested "If's"

- Format:
=IF(<condition to check>, <return: true>, <return: condition false>)

Another if-check if (<condition to check>, <return: true>, <return: false>)

- Example:

Previous Example: Initial Cases

- If GPA >= 4.0 "Perfert", if $3.0<=\mathrm{GPA}<4.0$, "Excellent"

Previous Example: Nested Solution

=IF (D2>=4, "Perfect", IF (D2>=3, "Excellent", IF (D2>=2, "Adequate", IF (D2>=1, "Pass", "Fail"))))

D	E
Term grade point	Passed course?
3.66	Excellent ,'
3.54	Excellent
1.52	Pass
4	Perfect

Lookup Tables

- Can be instead of many nested IF's.
- Easier to enter, update, understand.
- Requirements of previous example:
$0<=$ GPA < 1: Fail
$1<=$ GPA < 2 : Pass
2 <= GPA < 3 : Adequate
$3<=$ GPA < 4 : Excellent
GPA >= 4 : Perfect
- Previous solution:
=IF(D2>=4, "Perfect", IF (D2>=3, "Excellent", IF(D2>=2, "Adequate", IF(D2>=1, "Pass", "Fail"))))

LOOKUP

- https://support.office.com/en-US/article/LOOKUP-function-446D94AF-663B-451D-8251-369D5E3864CB
- Typical use:
- Looking up a value from one column ("a vector")
- Return a value from another column ("a vector")
- (According to Microsoft): if you want to look up values from multiple columns ("an array") then the VLOOKUP function should be used instead of LOOKUP.

- Format:

VLOOKUP(<Lookup value>,
<Lookup column (vector) Start : End>, <result column (vector) Start : End>)

LOOKUP (2)

- Name of example spreadsheet: 15_lookup

- Row 2 data

= LOOKUP (D2,	D11:D15,	E11:E15)
Coll:	,	,
Cell:	Lookup column:	Result column:
Contains value to find in	Start : End	Start : End
table e.g., a grade point	cell coordinates	Cell coordinates

VLOOKUP

- A more complicated (but more powerful) version of a lookup function.
- https://support.office.com/en-US/article/VLOOKUP-function-0BBC8083-26FE-4963-8AB8-93A18AD188A1
- Format:

VLOOKUP(<Lookup value>, * <Lookup table Start : End>, * <Lookup table Column specifying the return value>, * [<Exact match required?>])

- A star * indicates a required value, brackets [] specify optional values
- Example:
$=$ VLOOKUP (D2,
D11:E15,
Lookup table:
Start : End
cell coordinates

2)

$\xrightarrow{\square}$
Lookup table: Column value to return (1 = first col. 'D', 2 = second col. ' E ')

VLOOKUP: Previous Example

	D	E	
		Min. GPA	Comment
11	0	Fail	
12	1	Pass	
13	2	Adequate	
14	3	Excellent	
15	4	Perfect	

Spreadsheet example name:
16_vlookup.xlsx

VLOOKUP: Optional Value = TRUE

- VLOOKUP(=VLOOKUP(D2,D11:E15,2,TRUE))
- TRUE (works like LOOKUP so values must be sorted)
- Look for an approximate match.
- If an exact match is not found, the next largest value that is less than lookup value is returned.
- If T/F value is omitted then the function assumes a 'TRUE' value.

GPA $=3.54$

Min. GPA	Comment		
0	Fail	$>3.54 ?$	
1	Pass	$>3.54 ?$	
2	Adequate	$>3.54 ?$	
3	Excellent	$>3.54 ?$	E Backup and use this
4	Perfect	$>3.54 ?$. No! value Return "Excellent"	

VLOOKUP: Optional Value $=$ FALSE

- VLOOKUP(=VLOOKUP(D2,D11:E15,2,FALSE))
- FALSE:
- Looks only for an exact match
- If a match is found then the value at the specified location is returned.
- Else if no match is found the an error message is displayed.

Term grade point	Comments	Comments
1	Pass	Pass
3.54	Excellent	\#N/A
1.52	Pass	\#N/A
4	Perfect	Perfect

Min. GPA	Comment
0	Fail
1	Pass
2	Adequate
3	Excellent
4	Perfect

- Table values do not have to be sorted.

VLOOKUP: Optional Value = TRUE/FALSE

- TRUE
- Use when looking a value in a range of values (must be in ascending order) E.g. grades, tax brackets

Income range	Min for range	Tax rate
$0-\$ 20,000$	0	0%
$>\$ 20,000$	20,000	10%

- FALSE:
- Use when there is an exact value to lookup (order is not important) e.g., SIN numbers, product ID number
$\left\{\begin{array}{l|l|l|}\hline \text { Product number } & \text { Name } & \text { Price } \\ \hline \text { B00KAI3KW2 } & \text { Xbox One } & \$ 449 \\ \hline \text { B00BGA9WK2 } & \text { Playstation 4 } & \$ 449 \\ \hline\end{array}\right.$

Recap: If Function Vs. Lookup Functions

- Multiple If's:
- Can be used if there are only a handful of conditions to check (rule of thumb: 2-3 max e.g., 2 conditions)
=IF(D2>=3, "Honors", IF (D2>=0, "Pass", "Fail"))
- Complex and error prone for anything else (e.g. 5 conditions)
=IF(D2>=4, "Perfect", IF (D2>=3, "Excellent", IF (D2>=2, "Adequate", IF(D2>=1, "Pass", "Fail"))))
- Lookup functions
- Steeper learning curve (but a "one-time investment")
- Once learned the formulas are simpler (no nesting) and less error prone
=VLOOKUP (D2, D11:E15, 2)

Min. GPA	Comment
0	Fail
1	Pass

Logical Operations In Excel

- The basic logical operations: AND, OR, NOT can be invoked as functions in Excel
- All function inputs can only be a True or False value.
- Format:

AND(<True or False>,<True or False>...)
OR(<True or False>,<True or False>...)
NOT (<True or False>)

- Examples:

AND(C1>=45,D1="John Smith") \# Requires all
OR(C1>=0,D2>=0) \# Requires at least one
NOT(AA12) \# AA12 Must contain a logical: TRUE, FALSE Value

Logic And IF's: Example

- The honor roll for each semester requires that grade point is 3.7 or greater and a full load of at least 5 courses must be taken.
- AND Example: Honor roll
- Signify when a student has met the honor roll requirements with an " H ", blank cell otherwise.
$=\operatorname{IF}(\operatorname{AND}(B 5>=3.7, C 5>=5), " H ", "$ ")

- Spreadsheet example name: 13_if_logic

Logic And IF's: Example (2)

- OR Example: Hiring if at least one requirement met (work experience of $5+$ years, grade requirement of 3.7 or higher)

E12
Total work
experience
7 =IF(OR(E12>=5,G16>3.7),"1+ requirement met","")
G16
Overall GPA
3.6

Lecture Exercise \#4: Branching (And Other) Functions

Conditional Counting Functions

- Increases a tally count if one or conditions have been met
- COUNTIF () : count if a particular condition has been met
- COUNTIFS(): count if all conditions have been met

Counting Functions Based On Conditions: Countif()

- Counts the number of cells that meets a particular requirement
- https://support.office.com/en-US/article/COUNTIF-function-EODE10C6-F885-4E71-ABB4-1F464816DF34

	Col C
13	0
14	2
15	"A"
16	
COUNTIF (\#)	$=$ Countif(C13:C16,">0")

Counting Functions Based On Conditions: Countifs(), 3

- Can be used when multiple requirements must be met:
- Counts the number of cells that meets all in a series of multiple requirements
- https://support.office.com/en-US/article/COUNTIFS-function-DDA3DC6E-F74E-4AEE-88BCAA8C2A866842
- Format:
=countifs(
<range 1>, <criteria 1>,
... <optional additional range>, <optional additional criteria>)
- Example: 14_conditional_counting_formulas
- =countifs(A1:A10,"A", B2:B7, ">=100")

Counting Functions: Countifs(), 4

2 months quota met

Specify: count number of employees that met the quota for both months

Conditional Formatting

- A very practical example of how conditional branching "if's" can be applied.
- Use of conditional formatting will be covered in tutorial.

Methods Of Referring To Cells

- Absolute:
- The formula won't change if you copy/cut and paste the formula or if the spreadsheet changes in size
- Relative
- The formula changes depending how far that the formula is moved or how much the spreadsheet is changed in size.

Absolute Reference

- When a reference to an cell or range of cells doesn't change when the contents of a cell or cells is copied or the sheet changes in size.

Original formula (B12)

$=\$ B \$ 1-B 10$

Copied (C12)
$=\$ B \$ 1-\mathrm{C} 10$

Absolute Reference (2)

Absolute reference because the same (absolute) reference to cell B1 is made when the formula is copied.

Absolute Reference (3)

- Typically it's used in conjunction with constants (data that won't change).

References to B1 are
 absolute because income doesn't change

Original formula (B12)

=\$B\$1-B10

Relative Reference

- A reference to a cell or group of cells that may change if the cell/cells are copied or the sheet changes in size.

Relative Reference (3)

- Typically it's used with variable data (that may change over time or in different parts of the sheet).

Cell References: Important Details

- Format: specify absolute cell references with a dollar sign '\$’ immediately in front of the row or column value.
[<doLlar sign for column>]<column> [<dollar sign for row>]<row>
- Examples:
- Relative column, relative row: A1
- Relative column absolute row: A\$1
- Absolute column, relative row: \$A1
- Absolute column, absolute row: \$A\$1

Absolute, Relative And Mixed References:

Examples ${ }^{1}$

Example	Reference type	Copied result
$\$$ A\$1	\bullet Absolute column \bullet Absolute row	$\$$ A\$1
A\$1	\bullet Relative column \bullet Absolute row	C\$1
\$A1	\bullet •Absolute column \bullet Relative row	\$A3
A1	\bullet Relative column \bullet Relative row	C3

1 Examples from the Excel 2003 Help System

Absolute, Relative References: Example

- Example: 17_absolute_relative

Absolute/Relative Applied To A Previous Example

- Which part of the formula should be:
- Absolute?
- Relative?
- Why?

Lecture Exercise \#4: Absolute, Relative Addressing (If There Is Time)

Testing Spreadsheets

- Test formulas to ensure that they are correct.
- Enter a few test values and see if the results match expectations.
- Simple interest example:
- Amount = Principle + (Principle * Interest rate * Time)
- E.g., $\$ 100$ at 10% for 3 years

Amount $=100+(100$ * 0.1 * 3)

$$
\text { = } 100+(30)
$$

= \$130

Some example test cases:

1. Nothing to invest: principle is nothing, everything else non-zero.
2. Interest rates are rock bottom: zero interest rates, everything else nonzero
3. No time passed: time is zero, everything else non-zero.
4. Normal case: Non zero values for: principle, interest or time.

Example Testing A Formula

Testing Ranges	Min. GPA	Comment
	0	Fail
	1	Pass
	2	Adequate
	3	Exellent
- The following are the minimum test cases	4	Perfect

- Provide test values for each range
- In this example try grade points of 0,1,2,3, 4
- Also for at least one of the ranges test the boundaries (just above and below)
- Example: testing the boundary for 1 / "Pass"
- Slightly below a boundary value e.g., 0.9 should return "Fail"
- Slightly above a boundary value e.g., 1.1 should return "Pass"
- Total test cases for this example: 7 tests

Example: Good Design And Testing

- Previous grading example: the following will likely be data (cannot be calculated from other values in the sheet)

Term Grade Point

- How should this value be calculated?

- First step: make it mathematically correct
- Assignment: proportion of term grade $=40 \%$
- Exam: proportion of term grade $=60 \%$

Term Grade Point (2)

- Second step: make sure that you follow good style:
- Be 'lazy', minimalize your work!
- If a value can be determined by existing data then don't manually enter the value e.g., term grade point can be calculated by the grade points of each component and their weights.
-Future grade changes are easier to make
-Also reduces errors)

-Allow for reuse of the formula (copy-and-paste): correct application of absolute vs. relative addressing

Term Letter Grade

- How should this value be derived?
- Use the cutoff values in the table below.
- Remember it must be correct AND it should follow good style conventions.

Absolute, Relative: Completed Example

- Spreadsheet solution name (don't look at contents before we go over the concepts in lecture)
18_vlookup_absolute_relative_addressing

Graphic Design And Spreadsheets

- Using color
- C.R.A.P.
- Fonts and font effects
- Text vs. graphs and charts

Color: Properly Used

- When used sparingly color can draw attention to important information.

Stock	Open	Close	Change
HAL	255	256	1.00
HAM	256	255	-1.00
FOO	12	13	1.00
TAM	12.25	12.5	0.25
BAR	1001	989	-12.00
BOO	17	16.5	-0.50
WOW	1	177	176.00
GEM	45	50.00	5.00
DUD	12	10.00	-2.00
AAA	10	10.5	0.50
XYZ	12.5	11	-1.50
ZOO	55	56	1.00
FIZ	17.5	17.25	-0.25
BRIK	128	64	-64.00

- This is an especially valuable tool when there is a large amount of information.
- The information may be "all there" but don't make it any harder than it has to be for the viewer to find it.

Color Misused

Date	Description	IN	OUT	BALANCE
January 12013	Balance from 2012	2023.4		2023.4
January 72013	Electricity		223	1800.40
January 9 2013	House		910	890.40
January 10 2013	From savings	1280		2170.40
January 13 2013	Gas		110	2060.40
January 15 2013	Cash		20	2040.40
January 31 2014	Interest	2.29		2042.69

- The overuse of color:
- Reduces it's ability to make information stand out.
- Makes it harder to understand what information is mapped to a particular color.
utility
house
From savings
Cash
Salary
Pay credit
Interest

Rule Of Thumb For Color: Make It Subtle

- We have all seen the use of 'loud' and clashing colors that can make text very hard to read.

JT: I've actually seen green-red color combinations on listings of ingredients

- Balance the use of color between noticeability and subtlety
- Make it as subtle as possible while still conveying the necessary information using color

Additional Issues Associated With Color

- Color blindness affects a portion of the population:
- The majority of people who are color blind are red-green color blind so using only these colors to represent information should be avoided.
- Field size
- The larger the area to be color coded, the more easily that colors can be distinguished.

This course has been significantly changed from the versions run in previous semesters (including fall 2014). While thinking and pro example, you won't just learn programming for the sake of writing a program (in reference to the old "Alice" and "Jython" sections Consequently two new assignments have been added programming in Visual Basic for Applications (MS-Word) and web page Larger areas: assignments have been reduced in scope to accommodate the new material. Also the quiz component has been dropped \leftarrow

Lecture and important assignment information

Day/Time L01: TR 12:30-13:45 (ST135) \quad L02: TR 9:30-10:45 (MS319)
Contact James Tam
Information:
Office: ICT707
Office hours: T 11-11:50 AM, R 14:00-14:50 (if I'm a bit late I could be just finishing off answeringe questions in the previous lecture)
colors can be more subtle

Smaller areas: colors may have to employ greater contrast

Additional Issues Associated With Color (2)

- When objects are small (text or small graphics) and color is used to distinguish information use highly saturated colors.

This is important information!

This is
important
information!

- Conventions

- "Commonly accepted" conventions can vary widely by culture and their use should be carefully considered

Color And Cultural Associations

	Egypt	China	Japan	India	France
Red	- Death	-Happiness	- Anger, Danger	- Life, creativity	- Aristocracy, Freedom, Peace
Blue	- Virtue, Faith, Truth	- Heavens, Clouds	-Villainy		- Freedom, peace
Green	- Fertility, Strength	- Ming Dynasty, Heavens, Clouds	- Future, Youth, Energy	- Prosperity, Fertility	-Criminality
Yellow	- Happiness, Prosperity	- Birth, Wealth, Power	- Grace, Nobility	-Success	-Temporary
White	- Joy	- Death, Purity	-Death	- Death, Purity	- Neutrality

From "How Fluent is Your Interface? Designing for International Users" Proceedings of the INTERCHI'93. Russo P. and Boor S.

Fonts And Font Effects

- Example fonts:
- Ariel
- Calibri
- Helvetica
- Times New Roman
- Font effects:
- Italics
- Bold
- Underline
- Normal
- Font sizes

Fonts And Font Effects (2)

- As a rule of thumb use no more than 3 sizes and font effects in a particular document.
- Similar to color, their overuse reduces their effectiveness and makes it harder to interpret meaning.
- Also if you don't know much about fonts just stick to the common or default ones provided (Arial, Calibri, Helvetica, Times New Roman)
- If you're not sure if a font is a good one for a particular situation then it probably isn't:
-Extreme example "Wing dings": •) ■ 毋

C.R.A.P. ${ }^{1}$

- Simple design principles that can be applied in a variety of situations
- Contrast
- Repetition
- Alignment
- Proximity

Contrast \& Repetition

- Contrast:
- Make different things look significantly different
- Repetition (Consistency):
- Repeat conventions throughout the interface to tie elements together

Example: No Contrast							
Student ID	Faculty	A1	A2	A3	Midterm	Final	Term Percentage
111	Science	95	90	88	75	66	76.2
112	Social Sciences	80	80	75	70	75	74.5
113	Social Sciences	78	80	85	75	65	72.8
114	Management	100	90	85	80	75	81.5
115	Management	100	95	90	90	95	93.5
116	Management	75	70	75	50	30	49
117	Humanities	65	80	75	70	80	75

Example: Weak Contrast

Student ID	Faculty	A1	A2	A3	Midterm	Final Term Percentage	
111	Science	95	90	88	75	66	76.2
112	Social Sciences	80	80	75	70	75	74.5
113	Social Sciences	78	80	85	75	65	72.8
114	Management	100	90	85	80	75	81.5
115	Management	100	95	90	90	95	93.5
116	Management	75	70	75	50	30	49
117	Humanities	65	80	75	70	80	75

Example: Headings Stand Out

- Good contrast:

- If contrast is not (or weakly) employed for a small set of data it may not be a large issue.
- But for larger data sets ("real data") it may make it more work than is necessary.

Student ID	Faculty	A1	A2	A3	Midterm	Final	Term Percentage
111	Science	95	90	88	75	66	76.2
112	Social Sciences	80	80	75	70	75	74.5
113	Social Sciences	78	80	85	75	65	72.8
114	Management	100	90	85	80	75	81.5
115	Management	100	95	90	90	95	93.5
116	Management	75	70	75	50	30	49
117	Humanities	65	80	75	70	80	75

- Repetition:
- Same fonts, font sizes and font effects used in the headings vs. the data.
- Makes it easier to see and understand the structure

Alignment

- It can be used to structure a document (represents hierarchical relationships).
- Heading
- Sub heading
- Sub heading
- Heading
- Sub heading
- Sub heading
- Sub heading
- Heading

Alignment And Repetition

- Consistent alignment (left or right and not center) can be used to represent relationships.
- All the data in a column are consistently aligned to signify they belong a group
- Example: movie credits

The Kung Fu master James "The Bullet" Tam
Arch villain James (Evil dude) Tam
Kung Fu student \#1 Eager Tam1
Kung Fu student \#2 Eager Tam2
Thug \#1 Cannon-fodder Tam \#1
Thug \#2 Cannon-fodder Tam \#2
Damsel in distress Jamie Tametta

Center Alignment

Computer fundamentals

Example technical specifications from an actual computer system (paraphrased from www.bestbuy.ca June 2015

- 3.6 GHz 4th generation Intel Core i7-4790 processor
- 8GB RAM
- 1TB hard drive
- USB 3.0 ports - HDMI output|

When buying a computer today the typical consumer is often overwhelmed with a daunting list of technical specifications. These specifications often assume that the reader has certain background knowledge. However unlike some books that may seem to discuss technical details just for their own sake this chapter was written specifically to only introduce the necessary basics so as not to overwhelm beginners. The drawback is however that you will have to consult additional sources if you overwhelm beginners. The drawback is however that you will have to consult additional sources if you technical details of graphics hardware.

- Types of computers and computing devices from tablets to traditional desktop computers. What is the difference between them and some of their pros and cons.
- Commonly used technical specifications: deciphering some of 'techno-babble' that you may see in some computer advertisements.
- Specifications for computer hardware that probably doesn't make any difference in a typical Specifications for computer hardware that probably doesn't make any difference in a typical
person's use of the computer but may be beneficial to know for certain groups (e.g. graphic designers) or situations (e.g. gaming).

Centre Alignment (2)

- Don't use it for hierarchical documents because it removes or hides the organization.
- In a document that contains structure center alignment can look unorganized (the center alignment appears as no alignment, disorganized)
- At most: sparing use can be used to provide contrast e.g., slide titles vs. content.
- Because it removes a common method for structuring a document it can make reading text more difficult.
- At most use it as an exceptional case to make an item stand out.

Center Alignment

- Again: while sparing use of center alignment can be used to provide contrast it should NEVER be used as the default in documents such as spreadsheets.

4	A	8	c	D	E	F	-	H
4	Studentio	Faculty	${ }^{\text {al }}$	A2	${ }^{43}$	Miderm	Final	Term Percentage
5	111	Science	95	90	${ }^{88}$	75	66	7.2
6	112	Social Sciences	so	80	75	70	75	74.5
7	113	social Sciences	78	80	${ }^{55}$	75	65	728
8	114	Management	100	90	85	${ }^{30}$	75	81.5
9	115	Management	100	95	90	90	95	93.5
10	116	Management	75	70	π	50	30	49
11	117	Humanities	65	80	75	70	80	75
12	118	Social Sciences	so	70	80	55	40	55.5
13	119	Management	100	60	80	69	70	72.7
14	120	Management	100	90	85	so	75	81.5
15	121	Physical Education	100	95	90	90	95	93.5
16	122	Management		80	70	70	50	56
17	123	Management	100	95	90	90	95	93.5
18	124	Humanities	75	70	75	50	30	49
19	125	Sclence	65	80	75	70	80	75
20	126	Social Sciences	100	so	0	so	70	7
21	127	social Sciences	87	60	80	69	70	71.4

Proximity

- Related items are in close proximity
- Unrelated items are separated

Text Or Graphics?

- Text?
- A graph or chart?
- What type to use? (Pie, bar, line etc.)

The Benefits Of Using Text

- Text is the best representation to use when accuracy is paramount.
- Example term grades for individual students.

Benefits Of Graphics

- Graphics:
- Useful for illustrating relationships or visualizing patterns
- Example: Anscombe's Quartet ${ }^{1}$
- Shown one way (a set of numbered pairs) it's hard to analyze the information e.g., is there any trends or patterns?

Anscombe, F. J. (1973). "Graphs in Statistical Analysis". American Statistician 27 (1): 17-21

Benefits Of Graphics (2)

- Example: Anscombe's Quartet (continued)

Benefits Of Graphics (3)

- Graphical representations can make a powerful impression!

Letter	No. occurrences
F	0
D	1
D $_{+}$	1
C-	2
C	8
C+	12
B-	17
B	25
B+	33
A-	45
A	30
A+	10

No. occurrences

Ways Of Graphically Representing Information

- Pie chart

- Bar graph

- Line graph

Line

Pie Charts

- Good for showing proportions, how much of the whole does each item contribute.

Grade distribution

- F
■
-
- It's poor for showing exact numeric values.

No. of students receiving each grade

Bar And Line Graphs

- For showing trends

- Comparing functions

Rules Of Thumb For Graphs

1. The X axis is used to plot known data (e.g., letter grades), while the Y axis is used to plot the unknown data (e.g., the number of students who received particular letter grades).

—No. occurances
LLetter
—No. occurances

Rules Of Thumb For Graphs (2)

2. Bar graphs are used to plot non-continuous data - e.g., the number of patients that go to different hospitals.
3. Line graph are used to plot continuous data

- e.g., mortality trends over time.

Keep Your Graphs Simple

- Similar to using multiple types of fonts and font effects unless you are a skilled graphic designer it's best to keep it simple (clarity over 'fancy effects).

After This Section You Should Now Know

- The benefit of electronic over paper spreadsheets
- Spreadsheets 101: The basic layout and components of a spreadsheet
- What is a worksheet
- When to use multiple spreadsheets vs. multiple worksheets
- How to reference data in other spreadsheets or worksheets (cross references)
- How Excel groups functions according to tabs on the ribbon
- What are the most commonly used tabs and what some of the functions available on those tabs
- Entering data: manually and via autofill
- How to freeze data

After This Section You Should Now Know (2)

- Tags
- How to do tag a spreadsheet
- What is the benefit of using tags
- Common mathematical operators and the order of operation
- What is the difference between constants (data) and calculations (formulas)
- How is a formula differentiated from data
- The three rules of thumb for designing spreadsheets

1. Don't make something data if it can be derived
2. Label everything
3. Don't duplicate data

After This Section You Should Now Know (3)

- Lookup tables
- How to create a use a lookup table
- Formulas:
- Directly entering custom formulas
- Using built-in pre-created formulas
- What is the order of operation for common operators
- How to format cells using the "format cell" option
- What is the effect of different numeric formatting options
- How to use basic statistical formulas: sum(), average(), min(), max ()
- How to use counting functions: count (), counta(), countblank, countif(), countifs()

After This Section You Should Now Know (4)

- How to use string functions: lower(), upper, proper(), trim(), concatenate(), find(), left(), right(), mid()
- How to use the today () , now () functions
- How to use 'if-else' for branches that return different values
- The different ways of expressing logical comparators
- How to write or evaluate nested 'if's'
- Logical operations in Excel: AND, OR, NOT
- How to write or evaluate logical operations
- How to apply the logical operations in conjunction with the 'if-else'
- How to use the LOOKUP (), VLOOKUP function

After This Section You Should Now Know (5)

- How to come up with set of reasonable test cases for a spreadsheet
- Formulas and ranges
- What is the difference between an absolute vs. relative cell reference and when to use each one
- Rules for using and not misusing color
- Issues associated with color: color blindness, field size, conventions for color
- Rules of thumb for using fonts and font effects
- C.R.A.P.
- What does each part mean
- How it can be used for effective graphic design

After This Section You Should Now Know (6)

- When to use text vs. graphics
- When to use a pie chart vs. bar graph vs. line graph

Copyright Notification

- "Unless otherwise indicated, all images in this presentation are used with permission from Microsoft."
- Images of spreadsheets (save VisiCalc) are curtesy of James Tam

