
CPSC 219: Administrative information 1

James Tam

Introduction To Java Programming

You will learn about the process of

creating Java programs and constructs

for input, output, branching, looping and

arrays.

James Tam

Java: Write Once, Run Anywhere

•Consequence of Java’s history
(coming later): platform-
independence

Mac user running Safari

Windows user running Internet Explorer

Web page stored on Unix server

Click on link to Applet

Byte code is downloaded

Virtual machine translates byte code to

native Mac code and the Applet is run

Byte code

(part of web

page)

CPSC 219: Administrative information 2

James Tam

Java: Write Once, Run Anywhere

•Consequence of Java’s history
(coming later): platform-
independence

Mac user running Safari

Windows user running Internet Explorer

Web page stored on Unix server

Click on link to Applet

Virtual machine translates byte code to

native Windows code and the Applet is run

Byte code is downloaded

Byte code

(part of web

page)

James Tam

Java: Write Once, Run Anywhere (2)

•But Java can also create standard (non-web based) programs

Dungeon Master (Java version)

Accessed 2013
http://homepage.mac.com/aberfield/dmj/

Some examples of mobile Java games: http://www.mobilegamesarena.net

Kung Fu Panda:

Accessed 2013

screen grab from www.kunfupanda.com

http://homepage.mac.com/aberfield/dmj/
http://www.kunfupanda.com/

CPSC 219: Administrative information 3

James Tam

Java: Write Once, Run Anywhere (3)

•Java has been used by large and reputable companies to create
serious stand-alone applications.

•Example:
- Eclipse1: started as a programming environment created by IBM for

developing Java programs. The program Eclipse was itself written in Java.

1 For more information: http://www.eclipse.org/downloads/

James Tam

JT’s Note: IDE’s

•There are many graphical development environments available
for Java (e.g., Eclipse).

•Learning one or more these environments prior to embarking
on employment would be a valuable experience.

•However it is not recommended that you use them for this
course.
- You may have drastic problems configuring the environment (e.g., if you

have to use example starting code).

- It’s easier programming without an IDE and then learning one later than
the opposite (not all development teams can/will use them).

- With the size of the programs you will see in this class it would be a good
learning experience to ‘work without a net’.

•Because you have to do it all yourself you will likely learn things better.

•Bottom line: if you have problems with the IDE then you will
likely be on your own.

http://www.eclipse.org/downloads/

CPSC 219: Administrative information 4

James Tam

Official Online Documentation

•“Getting started” tutorials:
- http://docs.oracle.com/javase/tutorial/

James Tam

Compilation

•Translating from a high level programming language such as
Java or C++ to low level machine language (binary).

•Python:
- One stage translation process from Python to machine.

- The translated instructions remain in memory.

•Java
- Two stage process: 1) one time translation occurs Java to a generic binary

that is common to many computers and many electronic devices (this
creates a file) 2) when the program is run the generic binary is translated
to machine language that is specific to the device.

CPSC 219: Administrative information 5

James Tam

Compiled Programs With Different
Operating Systems: Multiple Compilers

Needed

Windows
compiler

Executable (Windows)

UNIX
compiler

Executable (UNIX)

Mac OS
compiler

Executable (Mac)

Computer
program

James Tam

A High Level View Of Translating/Executing
Java Programs

Java compiler

“javac”

Java program

Filename.java

Java byte

code (generic

binary)

Filename.class

Stage 1: Compilation

CPSC 219: Administrative information 6

James Tam

A High Level View Of Translating/Executing
Java Programs (2)

Java interpreter

“java”

Java byte

code (generic

binary)

Filename.class

Machine language

instruction (UNIX)

Machine language

instruction (Windows)

Machine language

instruction (Apple)

Stage 2: Final translation and execution of the

byte code

James Tam

Which Java?

• Java JDK (Java Development Kit), Standard Edition includes:
- JDK (Java development kit) – for developing Java software (creating

Java programs).

- JRE (Java Runtime environment) –for running pre-created Java
programs.

•Java Plug-in – a special version of the JRE designed to run through web
browsers.

• For consistency/fairness: Your graded work will be based on
the version of Java installed on the CPSC network
- Only run your program using a remote connection program (e.g., SSH to

a CPSC Linux computer) or test your code periodically on the network to
make sure it’s compatible.

- It’s your responsibility to ensure compatibility.

- If the program doesn’t work on the Lunix computers in the lab then it
will only receive partial marks (at most).

http://java.sun.com/javase/downloads/index.jsp

CPSC 219: Administrative information 7

James Tam

Location Of Online Examples For This Section

•Course website:
-www.cpsc.ucalgary.ca/~tamj/219/examples/intro

•UNIX directory:
-/home/219/examples/intro

James Tam

Smallest Compilable And Executable Java
Program

The name of the online example is:
Smallest.java (Important note: the file name

must match the word after the keyword ‘class’

below).

public class Smallest

{

 public static void main (String[] args)

 {

 }

}

public class
Smallest
{

}

Smallest.java

CPSC 219: Administrative information 8

James Tam

Creating, Compiling And Running Java
Programs On The Computer Science Network

javac

Java compiler

Java byte code

filename.class

(UNIX file) To compile the program at the

command line type "javac
filename.java"

To run the interpreter, at

the command line type

"java filename"

java

Java Interpreter

Type it in with the text editor of your choice

filename.java

(Unix file)

Java program

James Tam

Compiling The Smallest.java Program

public class Smallest

{

 public static void main (String[] args)

 {

 }

}

Smallest.java

javac

(Java byte code)

10000100000001000
00100100000001001

 : :

Smallest.class

Type “javac
Smallest.java”

CPSC 219: Administrative information 9

James Tam

Running The Smallest.java Program

(Java byte code)

10000100000001000
00100100000001001

 : :

Smallest.class

java

Type “java
Smallest”

(Platform/Operating specific binary

10100111000001000
00100111001111001

 : :

James Tam

Running The Java Compiler At Home

•After installing Java you will need to indicate to the operating
system where the java compiler has been installed (‘setting the
path’).
- This is similar to Python.

•For details of how to set your path variable for your particular
operating system try the Sun or Java website.

•Example of how to set the path in Windows:
- http://java.sun.com/j2se/1.4.2/install-windows.html (see step 5 on the

web link)

•Alternatively: create your Java programs in the same location
as the Java compiler.

http://java.sun.com/j2se/1.4.2/install-windows.html
http://java.sun.com/j2se/1.4.2/install-windows.html
http://java.sun.com/j2se/1.4.2/install-windows.html

CPSC 219: Administrative information 10

James Tam

Documentation / Comments

Multi-line documentation
/* Start of documentation

*/ End of documentation

Documentation for a single line
//Everything until the end of the line is a comment

James Tam

Review: What Should You Document

•Program (or that portion of the program) author

•What does the program as a while do e.g., tax program.

•What are the specific features of the program e.g., it calculates
personal or small business tax.

•What are it’s limitations e.g., it only follows Canadian tax laws
and cannot be used in the US. In Canada it doesn’t calculate
taxes for organizations with yearly gross earnings over $1
billion.

•What is the version of the program
- If you don’t use numbers for the different versions of your program then

consider using dates (tie versions with program features).

CPSC 219: Administrative information 11

James Tam

Important Note

•Each Java instruction must be followed by a semi-colon!

General format

Instruction1;

Instruction2;

Instruction3;

 : :

Examples

int num = 0;

System.out.println(num);

 : :

James Tam

Java Output

•Format:
System.out.print(<string or variable name one> + <string or
variable name two>..);
OR
System.out.println(<string or variable name one> + <string
or variable name two>..);

•Examples (online program called “OutputExample1.java”)

public class OutputExample1

{

 public static void main(String [] args)

 {

 int num = 123; // More on this shortly
 System.out.println("Good-night gracie!");
 System.out.print(num);
 System.out.println("num="+num);
 }

}

CPSC 219: Administrative information 12

James Tam

Output : Some Escape Sequences For
Formatting

Escape sequence Description

\t Horizontal tab

\n New line

\" Double quote

\\ Backslash

James Tam

Variables

•Unlike Python variables must be declared before they can be
used.

•Variable declaration:
- Creates a variable in memory.

- Specify the name of the variable as well as the type of information that it
will store.

- E.g. int num;

- Although requiring variables to be explicitly declared appears to be an
unnecessary chore it can actually be useful for minimizing insidious logic
errors (example to follow shortly).

•Using variables
- Only after a variable has been declared can it be used (e.g., assignment)

- E.g., num = 12;

CPSC 219: Administrative information 13

James Tam

Using Variables: A Contrast

Python

•Variables do not need to be
declared before being used.

•Easy to start programming.

•Easy to make logic errors!

incomeTam = 25000

if (winLottery):

 incomeSmith = 1000000

•Syntactically variables must always
be declared prior to use.

•A little more work to get started.

•Some logic errors may be
prevented.

int incomeTam = 25000;

if (winLottery)

 incomeSmith = 1000000;

Java

Logic error: can be

tricky to catch in a

real (large and

complex) program

Syntax error: compiler

points out the source of

the problem

James Tam

Declaring Variables: Syntax

•Format:
<type of information> <name of variable>;

•Example:
char firstInitial;

•Variables can be initialized (set to a starting value) as they’re
declared:
char firstInitial = 'j';

int age = 30;

CPSC 219: Administrative information 14

James Tam

Some Built-In Types Of Variables In Java

Type Description

byte 8 bit signed integer

short 16 but signed integer

int 32 bit signed integer

long 64 bit signed integer

float 32 bit signed real number (rare)

double 64 bit signed real number (compiler default)

char 16 bit Unicode character (ASCII values and

beyond)

boolean True or false value

String A sequence of characters between double

quotes ("")

James Tam

Location Of Variable Declarations

public class <name of class>

{

 public static void main (String[] args)

 {

 // Local variable declarations occur here

 << Program statements >>

 : :

 }

}

CPSC 219: Administrative information 15

James Tam

Style Hint: Initializing Variables

•Always initialize your variables prior to using them!
- Do this whether it is syntactically required or not.

•Example how not to approach (with some languages it’s a logic
and not a syntax error):

public class OutputExample1

{

 public static void main (String [] args)

 {

 int num;

 System.out.print(num);

 }

}

OutputExample1.java:7: error: variable

num might not have been initialized

System.out.print(num);
 ̂

James Tam

Formatting Output

•It’s somewhat similar to Python.

•The field width and places of precision (float point) can be
specified.

•Format (‘System.out.’ requirement excluded for brevity):
prinf("%<field width>d", price); // Integer

printf("%<field width>s", price); // String

printf("%<field width>.<precision>f", price); // Floating point

•If field width greater than the size of the data:
- A positive field width will result in leading spaces (right justify).

- A negative field width will result in trailing spaces (left justify).

CPSC 219: Administrative information 16

James Tam

Formatting Output (2)

•Name of the online example: FormatttingOutput.java

public class FormattingExample

{

 public static void main(String [] args)

 {

 String str = "123";

 int num = 123;

 double price = 1.999;

 System.out.printf("%-4s", str);

 System.out.printf("%5d", num);

 System.out.printf("%6.2f", price);

 }

}

James Tam

Java Constants (“Final”)

Reminder: constants are like variables in that they have a name
and store a certain type of information but unlike variables they
CANNOT change. (Unlike Python this is syntactically
enforced…hurrah!).

Format:
 final <constant type> <CONSTANT NAME> = <value>;

Example:
 final int SIZE = 100;

CPSC 219: Administrative information 17

James Tam

Location Of Constant Declarations

public class <name of class>

{

 public static void main (String[] args)

 {

 // Local constant declarations occur here (for now)

 // Local variable declarations

 < Program statements >>

 : :

 }

}

James Tam

Variable Naming Conventions In Java

• Compiler requirements
- Can’t be a keyword nor can the names of the special constants: true,

false or null be used

- Can be any combination of letters, numbers, underscore or dollar sign
(first character must be a letter or underscore)

• Common stylistic conventions
- The name should describe the purpose of the variable

- Avoid using the dollar sign

- With single word variable names, all characters are lower case
•e.g., double grades;

- Multiple words are separated by capitalizing the first letter of each
word except for the first word

•e.g., String firstName = “James”;

CPSC 219: Administrative information 18

James Tam

Java Keywords

abstract boolean break byte case catch char

class const continue default do double else

extends final finally float for goto if

implements import instanceof int interface long native

new package private protected public return short

static super switch synchronized this throw throws

transient try void volatile while

James Tam

Common Java Operators / Operator
Precedence

Precedence

level

Operator Description

1 expression++

expression--

Post-increment

Post-decrement

2 ++expression

--expression

+

-

!

~

(type)

Pre-increment

Pre-decrement

Unary plus

Unary minus

Logical negation

Bitwise complement

Cast

CPSC 219: Administrative information 19

James Tam

Common Java Operators / Operator
Precedence

Precedence

level

Operator Description

3 *

/

%

Multiplication

Division

Remainder/modulus

4 +

-

Addition or String concatenation

Subtraction

5 <<

>>

Left bitwise shift

Right bitwise shift

James Tam

Common Java Operators / Operator
Precedence

Precedence

level

Operator Description

6 <

<=

>

>=

Less than

Less than, equal to

Greater than

Greater than, equal to

7 = =

!=

Equal to

Not equal to

8 & Bitwise AND

9 ^ Bitwise exclusive OR

CPSC 219: Administrative information 20

James Tam

Common Java Operators / Operator
Precedence

Precedence

level

Operator Description

10 | Bitwise OR

11 && Logical AND

12 || Logical OR

James Tam

Common Java Operators / Operator
Precedence

Precedence

level

Operator Description

13 =

+=

-=

*=

/=

%=

&=

^=

|=

<<=

>>=

Assignment

Add, assignment

Subtract, assignment

Multiply, assignment

Division, assignment

Remainder, assignment

Bitwise AND, assignment

Bitwise XOR, assignment

Bitwise OR, assignment

Left shift, assignment

Right shift, assignment

CPSC 219: Administrative information 21

James Tam

Post/Pre Operators

The name of the online example is: Order1.java

public class Order1

{

 public static void main (String [] args)

 {

 int num = 5;

 System.out.println(num);

 num++;

 System.out.println(num);

 ++num;

 System.out.println(num);

 System.out.println(++num);

 System.out.println(num++);

 }

}

James Tam

Post/Pre Operators (2)

The name of the online example is: Order2.java

public class Order2

{

 public static void main (String [] args)

 {

 int num1;

 int num2;

 num1 = 5;

 num2 = ++num1 * num1++;

 System.out.println("num1=" + num1);

 System.out.println("num2=" + num2);

 }

}

CPSC 219: Administrative information 22

James Tam

Unary Operator/Order/Associativity

The name of the online example: Unary_Order3.java

public class Unary_Order3.java

{

 public static void main (String [] args)

 {

 int num = 5;

 System.out.println(num);

 num = num * -num;

 System.out.println(num);

 }

}

James Tam

Casting: Converting Between Types

•Casting: the ability to convert between types.
- Of course the conversion between types must be logical otherwise an

error will result.

•In Java unlike Python the conversion isn’t just limited to a
limited number of functions.
- Consequently Python doesn’t have true ‘casting’ ability.

•Format:
<Variable name> = (type to convert to) <Variable name>;

CPSC 219: Administrative information 23

James Tam

Casting: Structure And Examples

The name of the online example: Casting.java

public class Casting {

 public static void main(String [] args) {

 int num1;

 double num2;

 String str1;

 num2 = 1.9;

 str1 = "123";

 num1 = (int) num2; // Cast needed to explicitly convert

 System.out.println(num1 + " " + num2);

 num2 = num1; // Cast not needed: going from less to more

 System.out.println(num1 + " " + num2);

 }

}

James Tam

Accessing Pre-Created Java Libraries

•It’s accomplished by placing an ‘import’ of the appropriate
library at the top of your program.

•Syntax:
import <Full library name>;

•Example:
import java.util.Scanner;

CPSC 219: Administrative information 24

James Tam

Getting Text Input

•You can use the pre-written methods (functions) in the
Scanner class.

•General structure:

import java.util.Scanner;

main (String [] args)
{
 Scanner <name of scanner> = new Scanner (System.in);
 <variable> = <name of scanner>.<method> ();
}

James Tam

Getting Text Input (2)

The name of the online example: MyInput.java

import java.util.Scanner;

public class MyInput
{
 public static void main (String [] args)
 {
 String name;
 int age;
 Scanner in = new Scanner (System.in);
 System.out.print ("Enter your age: ");
 age = in.nextInt ();
 in.nextLine ();
 System.out.print ("Enter your name: ");
 name = in.nextLine ();
 System.out.println ("Age: " +age +"\t Name:" + name);
 }
}

CPSC 219: Administrative information 25

James Tam

Useful Methods Of Class Scanner1

•nextInt()

•nextLong()

•nextFloat()

•nextDouble()

•nextLine()

1 Online documentation: http://docs.oracle.com/javase/8/docs/api/

James Tam

Reading A Single Character

•Text menu driven programs may require this capability.

•Example:
GAME OPTIONS

(a)dd a new player

(l)oad a saved game

(s)ave game

(q)uit game

•There’s different ways of handling this problem but one
approach is to extract the first character from the string.

•Partial example:
String s = "boo";

System.out.println(s.charAt(0));

CPSC 219: Administrative information 26

James Tam

Reading A Single Character

•Name of the (more complete example): MyInputChar.java

import java.util.Scanner;

public class MyInputChar

{

 public static void main (String [] args)

 {

 final int FIRST = 0;

 String selection;

 Scanner in = new Scanner (System.in);

 System.out.println("GAME OPTIONS");

 System.out.println("(a)dd a new player");

 System.out.println("(l)oad a saved game");

 System.out.println("(s)ave game");

 System.out.println("(q)uit game");

 System.out.print("Enter your selection: ");

James Tam

Reading A Single Character (2)

 selection = in.nextLine ();

 System.out.println ("Selection: " +

 selection.charAt(FIRST));

 }

}

CPSC 219: Administrative information 27

James Tam

Decision Making In Java

•Java decision making constructs
-if

-if, else

-if, else-if

-switch

James Tam

Decision Making: Logical Operators

Logical Operation Python Java

AND and &&

OR or ||

NOT not !

CPSC 219: Administrative information 28

James Tam

Decision Making: If

Format:
 if(Boolean Expression)

 Body

Example:
 if(x != y)

 System.out.println("X and Y are not equal");

 if ((x > 0) && (y > 0))

 {

 System.out.println("X and Y are positive");

 }

• Indenting the body of

the branch is an

important stylistic

requirement of Java

but unlike Python it is

not enforced by the

syntax of the

language.

• What distinguishes the

body is either:

1.A semi colon (single

statement branch)

2.Braces (a body that

consists of single or

multiple statements)

James Tam

Decision Making: If, Else

Format:
 if(Boolean expression)

 Body of if

 else

 Body of else

Example:
 if (x < 0)

 System.out.println("X is negative");

 else

 System.out.println("X is non-negative");

CPSC 219: Administrative information 29

James Tam

If, Else-If (Java)
If, Elif (Python)

Format:

 if (Boolean expression)

 Body of if

 else if (Boolean expression)

 Body of first else-if

 : : :

 else if (Boolean expression)

 Body of last else-if

 else

 Body of else

James Tam

If, Else-If (2)

Example: SwitchExample.java
 if (gpa == 4)

 {

 System.out.println("A");

 }

 else if (gpa == 3)

 {

 System.out.println("B");

 }

 else if (gpa == 2)

 {

 System.out.println("C");

 }

CPSC 219: Administrative information 30

James Tam

If, Else-If (2)

 else if (gpa == 1)

 {

 System.out.println("D");

 }

 else if (gpa == 0)

 {

 System.out.println(“F");

 }

 else

 {

 System.out.println("Invalid gpa");

 }

James Tam

Alternative To Multiple Else-If’s: Switch

Format (character-based switch):
switch (character variable name)

{

 case '<character value>':

 Body

 break;

 case '<character value>':

 Body

 break;

 :

 default:

 Body

}

1 The type of variable in the brackets can be a byte, char, short, int or long

Important! The break is

mandatory to separate

Boolean expressions

(must be used in all but

the last).

The break transfers

execution out of the

switch construct,

otherwise cases will

‘fall-through’

CPSC 219: Administrative information 31

James Tam

Alternative To Multiple Else-If’s: Switch (2)

Format (integer based switch):
switch (integer variable name)

{

 case <integer value>:

 Body

 break;

 case <integer value>:

 Body

 break;

 :

 default:

 Body

}

1 The type of variable in the brackets can be a byte, char, short, int or long

James Tam

The ‘Break’ Statement

•‘Break’s is mandatory if cases are to be separated.

•Example:
 int gpa = 3;

 char letter = ' ';

 switch (gpa) {

 case 4:

 letter = 'a';

 case 3:

 letter = 'b';

 case 2:

 letter = 'c';

 case 1:

 letter = 'd';

 case 0:

 letter = 'f';

 // Student receives an 'f'!

 }

As mentioned without

a break the switch will

execute the first true

case and all other

cases will ‘fall

through’

CPSC 219: Administrative information 32

James Tam

Switch: When To Use/When Not To Use

•Benefit (when to use):
- It may produce simpler code than using an if, else-if (e.g., if there are

multiple compound conditions)

- Contrast

// Using if
If ((menu == ‘a’) ||
 (menu == ‘A’) ||
 (menu == ‘N’) ||
 (menu == ‘n’))
 System.out.println(“New
player added”);
else if ((menu == ‘q’) ||
 (menu == ‘Q’))

switch(menu)
{
 case ‘a’:
 case ‘A’:
 case ‘N’:
 case ‘n’:
 System.out.println(“New player \
 added”);
 break;

 case ‘Q’:
 case ‘q’:

James Tam

Switch: When To Use/When Not To Use (2)

•Name of the online example: SwitchExample.java (When
to use)

import java.util.Scanner;

public class SwitchExample

{

 public static void main (String [] args)

 {

 final int FIRST = 0;

 String line;

 char letter;

 int gpa;

 Scanner in = new Scanner (System.in);

 System.out.print("Enter letter grade: ");

CPSC 219: Administrative information 33

James Tam

Switch: When To Use/When Not To Use (3)

 line = in.nextLine ();

 letter = line.charAt(FIRST);

 switch (letter)

 {

 case 'A':

 case 'a':

 gpa = 4;

 break;

 case 'B':

 case 'b':

 gpa = 3;

 break;

 case 'C':

 case 'c':

 gpa = 2;

 break;

James Tam

Switch: When To Use/When Not To Use (4)

 case 'D':

 case 'd':

 gpa = 1;

 break;

 case 'F':

 case 'f':

 gpa = 0;

 break;

 default:

 gpa = -1;

 } // End of switch (determining GPA)

 System.out.println("Letter grade: " + letter);

 System.out.println("Grade point: " + gpa);

 }

}

CPSC 219: Administrative information 34

James Tam

Switch: When To Use/When Not To Use (5)

•When a switch can’t be used:
- For data types other than characters or integers (Java 1.6 and earlier)

- Boolean expressions that aren’t mutually exclusive:
•As shown a switch can sometimes replace an ‘if, else-if’ construct
•A switch usually cannot replace a series of ‘if’ branches).

- Example when not to use a switch:
if (x > 0)
 System.out.print(“X coordinate right of the origin”);
if (y > 0)
 System.out.print(“Y coordinate above the origin”);

- Example of when not to use a switch (Java 1.6 and earlier):
String name = in.readLine()
switch (name)
{

}

James Tam

Loops

Python loops
•Pre-test loops: for, while

Java Pre-test loops
•For

•While

Java Post-test loop
•Do-while

CPSC 219: Administrative information 35

James Tam

While Loops

Format:
While (Boolean expression)
{
 Body

 }

Example:
 int i = 1;

 while (i <= 10)

 {

 System.out.println(i);

 i = i + 1;

 }

i = 0
while (i < 10):
 print(i)
 i = i + 1

James Tam

For Loops

Format:
 for (initialization; Boolean expression; update control)

 {

 Body

 }

Example
 for (i = 1; i <= 10; i++)

 {

 System.out.println(i);

 }

 for i in range (1, 11, 1):

 print(i)

CPSC 219: Administrative information 36

James Tam

For Loops: Java Vs. Python

•Unlike Python with most languages for loops are generally
used as counting (e.g., up down).

•Iterating through other series (such as lines in a file) is not
possible.

•Python example not possible in other languages
inputFile = open(“input.txt”,”r”)

for line in inputFile:

 print(line)

•In Java however the loop control can be updated by most any
mathematical expression (even randomly assigned).
 for (i = 1; i <= 100; i = i * 5)

James Tam

For Loops: Java Vs. Python (2)

• Also note in Java that the stopping boundary is explicit.
for (i = 1; i <= 10; i++)

-Vs.
for i in range (1, 11, 1):

CPSC 219: Administrative information 37

James Tam

Post-Test Loop: Do-While

•Recall Pre-test loops generally execute zero or more times.

•Example:
i = 100

while (i < 10) {

 // Body never executes

}

•Post-test loops evaluate the Boolean expression after the body
of the loop has executed.

•This means that post test loops will execute one or more times.

•General structure:
i = Start value

do

 Body

} while(condition)

James Tam

Do-While Loops

Format:

 do {

 Body

 }

 while (Boolean expression);

Example:

 int i = 1;

 do {

 System.out.println(i);

 i++;

 }

 while (i <= 10);

CPSC 219: Administrative information 38

James Tam

When To Use Post-Test (Do-While) Loops

•Useful when you need to guarantee execution occurring at
least once.

•Example: the loop body encloses the whole program
do

{

 // Play game

} while (Player doesn’t quit)

James Tam

Common Mistake: Branches/Loops

•Forgetting braces and that single statement bodies are
specified by the first semi-colon.

•(Partial) examples:
while (i < 10)

 System.out.println(i);

 i = i + 1;

while (i < 10);

{

 System.out.println(i);

 i = i + 1;

}

Body

Body

CPSC 219: Administrative information 39

James Tam

Many Pre-Created Classes Have Been Created

•Rule of thumb of real life: Before writing new program code to
implement the features of your program you should check to
see if a class has already been written with the features that
you need.

•Note: for some assignments you may have to implement all
features yourself rather than use pre-written code.
- You may receive little or no credit otherwise.

•The Java API is Sun Microsystems's collection of pre-built Java
classes:
- http://java.sun.com/javase/7/docs/api/

James Tam

Example: Generating Random Numbers
(Probabilities)

•Name of the (more complete example): DiceExample.java

public class DiceExample

{

 public static void main(String [] args)

 {

 final int SIDES = 6;

 Random generator = new Random();

 int result = -1;

 result = generator.nextInt(SIDES) + 1;

 System.out.println("1d6: " + result);

 result = generator.nextInt(SIDES) + 1;

 result = result + generator.nextInt(SIDES) + 1;

 result = result + generator.nextInt(SIDES) + 1;

 System.out.println("3d6: " + result);

 }

}

http://java.sun.com/javase/7/docs/api/

CPSC 219: Administrative information 40

James Tam

Arrays

•They are similar to Python lists.
- Specified with square brackets

- Indexed from 0 to (number elements-1)

•Some differences:
- All elements must be of the same type e.g., array of integers cannot mix

and match with floats

- Python has methods associated with lists although an array in Java has a
‘length’ attribute associated with it.

- Arrays cannot be dynamically resized (new array must be created).

James Tam

Creating An Array

•Format:
- <type> []1 <name> = new <type> [<Number of elements>];

•Example (common approach):
final int MAX = 100;

int [] grades = new int [MAX];

•Example (Fixed size array declared and initialized – rarely
used approach):
int [] array = {1,2,3};

1 Each dimension must be specified by a set of square brackets e.g., two dimensional array requires two sets of

brackets

CPSC 219: Administrative information 41

James Tam

Arrays: Complete Example

•Name of the (more complete example): GradesExample.java

public class GradesExample

{

 public static void main(String [] args)

 {

 final int MAX = 10;

 int [] grades = new int [MAX];

 int i = 0;

 Random generator = new Random();

James Tam

Arrays: Complete Example (2)

 for (i = 0; i < MAX; i++)

 {

 grades[i] = generator.nextInt(101);

 }

 for (i = 0; i < grades.length; i++)

 {

 System.out.println("Element #" + i + " grade " +

 grades[i]);

 }

 }

}

CPSC 219: Administrative information 42

James Tam

After This Section You Should Now Know

•The basic structure required for creating a simple Java program
as well as how to compile and run programs

•How to document a Java program

•How to perform text based input and output in Java

•The declaration of constants and variables

•Formatting output with the field width, precision and escape
codes

•Converting between types using the casting operator

•What are the common Java operators and how they work

•The structure and syntax of decision making and looping
constructs

James Tam

After This Section You Should Now Know (2)

•How to generate random numbers

•How to create and work with Java arrays

CPSC 219: Administrative information 43

James Tam

Copyright Notification

•“Unless otherwise indicated, all images in this presentation
are used with permission from Microsoft.”

slide 85

