
Introduction to Object-Oriented programming 1

James Tam

Introduction To Object-
Oriented Programming

Basic Object-Oriented principles such
as encapsulation, overloading as well
the object-oriented approach to
design.

James Tam

Reminder: What You Know

•There are different approaches to writing computer programs.

•They all involve decomposing your programs into parts.

•What is different between the approaches (how the
decomposition occurs)/(criteria used for breaking things
down”)

•There approach to decomposition you have been introduced
to thus far:
- Procedural

- Object-Oriented (~2 weeks for CPSC 231)

Introduction to Object-Oriented programming 2

James Tam

An Example Of The Procedural Approach
(Presentation Software)

•Break down the program by what it does (described with
actions/verbs)

Filing Editing Helping…

Creating

new

document

Opening a

document

Saving a

document

… Exiting

program

PowerPoint

James Tam

What You Will Learn

• How to break your program down into objects (New term:
“Object-Oriented programming”)

• This and related topics comprise most of the remainder of the
course

Introduction to Object-Oriented programming 3

James Tam

• Break down the program into entities (classes/objects -
described with nouns)

An Example Of The Object-Oriented Approach
(Simulation)

Zoo

Animals Buildings

Visitors

Staff

Admin

Animal

care

Lions

Tigers

Bears (oh

my!)

ETC.

James Tam

Classes/Objects

• Each class of object includes descriptive data.
- Example (animals):

•Species
•Color
•Length/height
•Weight
•Etc.

• Also each class of object has an associated set of actions
- Example (animals):

•Sleeping
•Eating
•Excreting
•Etc.

Introduction to Object-Oriented programming 4

James Tam

Example Exercise: Basic Real-World Alarm
Clock

• What descriptive data is needed?

• What are the possible set of actions?

James Tam

Additional Resources

•A good description of the terms used in this section (and terms
used in some of the later sections).
http://docs.oracle.com/javase/tutorial/java/concepts/

•A good walk through of the process of designing an object-
oriented program, finding the candidate objects e.g., how to
use the “find a noun’”approach and some of the pitfalls of this
approach.
http://archive.eiffel.com/doc/manuals/technology/oosc/finding/page.ht
ml

http://docs.oracle.com/javase/tutorial/java/concepts/
http://archive.eiffel.com/doc/manuals/technology/oosc/finding/page.html

Introduction to Object-Oriented programming 5

James Tam

Types In Computer Programs

• Programming languages typically come with a built in set of
types that are known to the translator
int num;

// 32 bit whole number (e.g. operations: +, -, *, /, %)

String s = "Hello";

// Unicode character information (e.g. operation:
concatenation)

• Unknown types of variables cannot be arbitrarily declared!
Person tam;
// What info should be tracked for a Person

// What actions is a Person capable of

// Compiler error!

James Tam

A Class Must Be First Defined

• A class is a new type of variable.

• The class definition specifies:
- What descriptive data is needed?

•Programming terminology: attributes = data (New definition)

- What are the possible set of actions?
•Programming terminology: methods = actions (new definition)
•A method is the Object-Oriented equivalent of a function

Introduction to Object-Oriented programming 6

James Tam

Defining A Java Class

Format:
public class <name of class>
{

attributes
methods

}

Example (more explanations coming shortly):
public class Person

{

private int age; // Attribute

public Person() { // Method

age = in.nextInt();

}

public void sayAge() {// Method

System.out.println("My age is " + age);

}

}

James Tam

The First Object-Oriented Example

• Program design: each class definition (e.g., public class
<class name>) must occur its own “dot-java” file).

• Example program consists of two files in the same directory:
- (From now on your programs must be laid out in a similar fashion):

-Driver.java

-Person.java

- Full example: located in UNIX under:

/home/219/examples/intro_OO/first_helloOO

Introduction to Object-Oriented programming 7

James Tam

The Driver Class

public class Driver

{

public static void main(String [] args)

{

Person aPerson = new Person();

aPerson.sayHello();

}

}
// Class person
public void sayHello()
{

...
}

James Tam

Class Person

public class Person

{

public void sayHello()

{

System.out.println("I don't wanna say hello.");

}

}

Introduction to Object-Oriented programming 8

James Tam

New Concepts: Classes Vs. Objects

• Class:
- Specifies the characteristics of an entity but is not an instance of that

entity

- Much like a blue print that specifies the characteristics of a building
(height, width, length etc.)

www.colorbox.com

James Tam

New Concepts: Classes Vs. Objects (2)

• Object:
- A specific example or instance of a class.

- Objects have all the attributes specified in the class definition

Images: James Tam

Introduction to Object-Oriented programming 9

James Tam

main() Method

•Language requirement: There must be a main() method - or
equivalent – to determine the starting execution point.

•Style requirement: the name of the class that contains main()
is often referred to as the “Driver” class.
- Makes it easy to identify the starting execution point in a big program.

•Do not instantiate instances of the Driver1

•For now avoid:
- Defining attributes for the Driver1

- Defining methods for the Driver (other than the main() method)1

1 Details may be provided later in this course

James Tam

Compiling Multiple Classes

•One way (safest) is to compile all code (dot-Java) files when
any code changes.

•Example:
-javac Driver.java

-javac Person.java

- (Alternatively use the ‘wildcard’): javac *.java

Introduction to Object-Oriented programming 10

James Tam

Why Must Classes Be Defined

• Some classes are already pre-defined (included) in a
programming language with a list of attributes and methods
e.g., String

• Why don’t more classes come ‘built’ into the language?

• The needs of the program will dictate what attributes and
methods are needed.

James Tam

Defining The Attributes Of A Class In Java

• Attributes can be variable or constant (preceded by the
‘final’ keyword), for now stick to the former.

• Format:
<access modifier>1 <type of the attribute> <name of the attribute>;

• Example:
public class Person

{

private int age;

}

1) Although other options may be possible, attributes are almost always set to private (more on this
later).

Introduction to Object-Oriented programming 11

James Tam

New Term: Object State

• Similar to how two variables can contain different data.

• Attributes: Data that describes each instance or example of a
class.

• Different objects have the same attributes but the values of
those attributes can vary
- Reminder: The class definition specifies the attributes and methods for all

objects

• Example: two ‘monster’ objects each have a health attribute
but the current value of their health can differ

• The current value of an object’s attribute’s determines it’s
state.

Age: 35
Weight: 192

Age: 50
Weight: 125

Age: 0.5
Weight: 7

www.colourbox.com

James Tam

Defining The Methods Of A Class In Java

Format:
<access modifier>1 <return type2> <method name> (<p1 type> <p1 name>, <p2 type>
<p2 name>…)

{

<Body of the method>

}

Example:
public class Person

{

// Method definition

public void sayAge() {

System.out.println("My age is " + age);

}

}

1) For now set the access modifier on all your methods to ‘public’ (more on this later).

2) Return types: includes all the built-in ‘simple’ types such as char, int, double…arrays
and classes that have already been defined (as part of Java or third party extras)

Introduction to Object-Oriented programming 12

James Tam

Parameter Passing: Different Types

Parameter

type

Format Example

Simple types <method>(<type> <name>) method(int x, char y) { ... }

Objects <method>(<class> <name>) method(Person p) { ... }

Arrays <method>(<type> []… <name>) method(Map [][] m) { ... }

When calling a method, only the names of the parameters must be

passed e.g., System.out.println(num);

James Tam

Return Values: Different Types

Return type Format Example

Simple types <type> <method>() int method() { return(0); }

Objects <class> <method>() Person method() {
Person p = new Person();
return(p);

}

Arrays <type>[]... <method>() Person [] method() {
Person [] p = new

Person[3];
return(p);

}

Introduction to Object-Oriented programming 13

James Tam

What Are Methods

• Possible behaviors or actions for each instance (example) of a
class.

Walk()
Talk()

Walk()
Talk()

Fly()

Swim()

James Tam

Instantiation

• New definition: Instantiation, creating a new instance or
example of a class.

• Instances of a class are referred to as objects.

• Format:
<class name> <instance name> = new <class name>();

• Examples:
Person jim = new Person();

Scanner in = new Scanner(System.in);

Creates new object

Variable names: ‘jim’,
‘in’

Introduction to Object-Oriented programming 14

James Tam

•New term: A special method to initialize the attributes of an object as the
objects are instantiated (created).

•The constructor is automatically invoked whenever an instance of the class
is created e.g., Person aPerson = new Person();

•Constructors can take parameters but never have a return
type.

Constructor

Constructor

Call to constructor
(creates something
‘new’)

Object

x

y

z

Object

x = 1

y = 2

z = 3

class Person {
// Constructor
public Person() {

…
}

}

James Tam

New Term: Default Constructor

• Takes no parameters

• If no constructors are defined for a class then a default
constructor comes ‘built-into’ the Java language.

• e.g.,
class Driver {

main() {

Person aPerson = new Person();

}

}

class Person {

private int age;

}

Introduction to Object-Oriented programming 15

James Tam

Calling Methods (Outside The Class)

• You’ve already done this before with pre-created classes!

• First create an object (previous slides)

• Then call the method for a particular variable.

• Format:
<instance name>.<method name>(<p1 name>, <p2 name>…);

• Examples:
Person jim = new Person();

jim.sayName();

// Previously covered example, calling Scanner class method
Scanner in = new Scanner(System.in);
System.out.print("Enter your age: ");
age = in.nextInt();

Scanner

variable
Calling

method

James Tam

Calling Methods: Outside The Class You’ve
Defined

• Calling a method outside the body of the class (i.e., in another
class definition)

• The method must be prefaced by a variable (actually a
reference to an object – more on this later).
public class Driver {

public static void main(String [] args) {

Person bart = new Person();

Person lisa = new Person();

// Incorrect! Who ages?

becomeOlder();

// Correct. Happy birthday Bart!

bart.becomeOlder();

}

}

Introduction to Object-Oriented programming 16

James Tam

Calling Methods: Inside The Class

• Calling a method inside the body of the class (where the
method has been defined)
- You can just directly refer to the method (or attribute)
public class Person {

private int age;

public void birthday() {

becomeOlder(); // access a method

}

public void becomeOlder() {

age++; // access an attribute

}

James Tam

Second Object-Oriented Example

• Learning concepts:
- Attributes

- Constructors

- Accessing class attributes in a class method

• Location of full example:
/home/219/examples/intro_OO/second_attributeConstructor

Introduction to Object-Oriented programming 17

James Tam

Class Driver

public class Driver

{

public static void main(String [] args)

{

Person jim = new Person();

jim.sayAge();

}

}

public Person() {
Scanner in = new

Scanner(System.in);
System.out.print("Enter age: ");
age = in.nextInt();

}

public void sayAge() {
System.out.println

("My age is " + age);
}

James Tam

Class Person

public class Person

{

private int age;

public Person()

{

Scanner in = new Scanner(System.in);

System.out.print("Enter age: ");

age = in.nextInt();

}

public void sayAge()

{

System.out.println("My age is " + age);

}

}

Introduction to Object-Oriented programming 18

James Tam

Creating An Object

• Two stages (can be combined but don’t forget a step)
- Create a variable that refers to an object e.g., Person jim;

- Create a *new* object e.g., jim = new Person();
•The keyword ‘new’ calls the constructor to create a new object in memory

- Observe the following
Person jim;

jim = new Person(12);

jim = new Person(22);

jim null

Jim is a reference to a Person
object

age =22

age =12

James Tam

Terminology: Methods Vs. Functions

• Both include defining a block of code that be invoked via the
name of the method or function (e.g., print())

• Methods a block of code that is defined within a class
definition (Java example):

public class Person
{

public Person() { ... }

public void sayAge() { ... }
}

• Every object that is an instance of this class (e.g., jim is an
instance of a Person) will be able to invoke these methods.
Person jim = new Person();
jim.sayAge();

Introduction to Object-Oriented programming 19

James Tam

Terminology: Methods Vs. Functions (2)

• Functions a block of code that is defined outside or independent of a class
(Python example – it’s largely not possible to do this in Java):
Defining method sayBye()

class Person:

def sayBye(self):

print("Hosta lavista!")

Method are called via an object

jim = Person()

jim.sayBye()

Defining function: sayBye()

def sayBye():

print("Hosta lavista!")

Functions are called without creating an object

sayBye()

James Tam

Methods Vs. Functions: Summary & Recap

Methods

•The Object-Oriented
approach to program
decomposition.

•Break the program down into
classes.

•Each class will have a number
of methods.

•Methods are invoked/called
through an instance of a class
(an object).

Functions

•The procedural (procedure =
function) approach to
program decomposition.

•Break the program down into
functions.

•Functions can be invoked or
called without creating any
objects.

Introduction to Object-Oriented programming 20

James Tam

Second Example: Second Look

Calls in Driver.java

Person jim = new Person();

jim.sayAge();

Person.java

public class Person {

private int age;

public Person() {

age = in.nextInt();

}

public void sayAge() {

System.out.println("My age

is " + age);

}

}
More is needed:
•What if the attribute ‘age’ needs to
be modified later?
•How can age be accessed but not
just via a print()?

James Tam

Viewing And Modifying Attributes

1) New terms: Accessor methods: ‘get()’ method
- Used to determine the current value of an attribute
- Example:

public int getAge()
{

return(age);
}

2) New terms: Mutator methods: ‘set()’ method
- Used to change an attribute (set it to a new value)
- Example:

public void setAge(int anAge)
{

age = anAge;
}

Introduction to Object-Oriented programming 21

James Tam

Version 2 Of The Second (Real) O-O Example

Location:
/home/219/examples/intro_OO/third_accesorsMutators

James Tam

Class Person

• Notable differences: constructor is redesigned, getAge()
replaces sayAge(), setAge() method added

public class Person
{

private int age;
public Person() {

…
age = in.nextInt();

}

public void sayAge() {
System.out.println("My age

is " + age);
}

}

public class Person
{

private int age;
public Person() {

age = 0;
}
public int getAge() {

return(age);
}

public void setAge
(int anAge){
age = anAge;

}
}

Introduction to Object-Oriented programming 22

James Tam

Class Driver

public class Driver

{

public static void main(String [] args)

{

Person jim = new Person();

System.out.println(jim.getAge());

jim.setAge(21);

System.out.println(jim.getAge());

}

}

James Tam

Constructors

•Constructors are used to initialize objects (set the attributes) as
they are created.

•Different versions of the constructor can be implemented with
different initializations e.g., one version sets all attributes to
default values while another version sets some attributes to
the value of parameters.

•New term: method overloading, same method name, different
parameter list.
public Person(int anAge) { public Person() {

age = anAge; age = 0;

name = "No-name"; name = "No-name";

}
}

// Calling the versions (distinguished by parameter list)
Person p1 = new Person(100); Person p2 = new Person();

Introduction to Object-Oriented programming 23

James Tam

Example: Multiple Constructors

•Location:
/home/219/examples/intro_OO/fourth_constructorOverloading

James Tam

Class Person

public class Person

{

private int age;

private String name;

public Person()

{

System.out.println("Person()");

age = 0;

name = "No-name";

}

Introduction to Object-Oriented programming 24

James Tam

Class Person(2)

public Person(int anAge) {

System.out.println("Person(int)");

age = anAge;

name = "No-name";

}

public Person(String aName) {

System.out.println("Person(String)");

age = 0;

name = aName;

}

public Person(int anAge, String aName) {

System.out.println("Person(int,String)");

age = anAge;

name = aName;

}

James Tam

Class Person (3)

public int getAge() {

return(age);

}

public String getName() {

return(name);

}

public void setAge(int anAge) {

age = anAge;

}

public void setName(String aName) {

name = aName;

}

}

Introduction to Object-Oriented programming 25

James Tam

Class Driver

public class Driver {

public static void main(String [] args) {

Person jim1 = new Person(); // age, name default

Person jim2 = new Person(21); // age=21

Person jim3 = new Person("jim3"); // name=“jim3”

Person jim4 = new Person(65,"jim4");

// age=65, name = “jim4”

System.out.println(jim1.getAge() + " " +

jim1.getName());

System.out.println(jim2.getAge() + " " +

jim2.getName());

System.out.println(jim3.getAge() + " " +

jim3.getName());

System.out.println(jim4.getAge() + " " +

jim4.getName());

}

}

James Tam

New Terminology: Method Signature

•Method signatures consist of: the type, number and order of
the parameters.

•The signature will determine the overloaded method called:
Person p1 = new Person();

Person p2 = new Person(25);

Introduction to Object-Oriented programming 26

James Tam

Overloading And Good Design

•Overloading: methods that implement similar but not identical
tasks.

•Examples include class constructors but this is not the only
type of overloaded methods:

System.out.println(int)

System.out.println(double)

etc.

For more details on class System see:
- http://java.sun.com/j2se/1.5.0/docs/api/java/io/PrintStream.html

• Benefit: just call the method with required parameters.

James Tam

Method Overloading: Things To Avoid

• Distinguishing methods solely by the order of the
parameters.
m(int,char);

Vs.

m(char,int);

• Overloading methods but having an identical
implementation.

• Why are these things bad?

http://java.sun.com/j2se/1.5.0/docs/api/java/io/PrintStream.html

Introduction to Object-Oriented programming 27

James Tam

Method Signatures And Program Design

•Unless there is a compelling reason do not change the
signature of your methods!

class Foo

{

void fun()

{

}

}

Before:
class Foo

{

void fun(int num)

{

}

}

After:

public static void main ()

{

Foo f = new Foo();

f.fun()

}

This change

has broken

me!

James Tam

Graphical Summary Of Classes

• UML (Unified modeling language) class diagram
- Source “Fundamentals of Object-Oriented Design in UML” by Booch,

Jacobson, Rumbaugh (Dorset House Publishing: a division of Pearson)
2000

- UML class diagram provides a quick overview about a class (later you
we’ll talk about relationships between classes)

• There’s many resources on the Safari website:
- http://proquest.safaribooksonline.com.ezproxy.lib.ucalgary.ca/

- Example “Sams Teach Yourself UML in 24 Hours, Third Edition”
(concepts)

- Hour 3: Working with Object-Orientation

- Hour 4: Relationships

- Hour 5: Interfaces (reference for a later section of notes “hierarchies”)

http://proquest.safaribooksonline.com.ezproxy.lib.ucalgary.ca/

Introduction to Object-Oriented programming 28

James Tam

UML Class Diagram

<Name of class>

-<attribute name>: <attribute type>

+<method name>(p1: p1type; p2 : p2 type..) :

<return type>

Person
-age:int

+getAge():int

+getFriends():Person []

+setAge(anAge:int):void

James Tam

Why Bother With UML?

•It combined a number of different approaches and has become
the standard notation.

•It’s the standard way of specifying the major parts of a
software project.

•Graphical summaries can provide a useful overview of a
program (especially if relationships must be modeled)
- Just don’t over specify details

Introduction to Object-Oriented programming 29

James Tam

Back To The ‘Private’ Keyword

• It syntactically means this part of the class cannot be accessed
outside of the class definition.
- You should always do this for variable attributes, very rarely do this for

methods (more later).

• Example
public class Person {

private int age;

public Person() {

age = 12; // OK – access allowed here

}

}

public class Driver {

public static void main(String [] args) {

Person aPerson = new Person();

aPerson.age = 12; // Syntax error: program won’t

// compile!

}

}

James Tam

New Term: Encapsulation/Information Hiding

•Protects the inner-workings (data) of a class.

•Only allow access to the core of an object in a controlled
fashion (use the public parts to access the private sections).

-Typically it means public methods accessing private attributes via
accessor and mutator methods.

-Controlled access to attributes:
•Can prevent invalid states
•Reduce runtime errors

private

data

public

method

public

method

public

method

set data

(mutator

method)

get data

(accessor

method)

Introduction to Object-Oriented programming 30

James Tam

How Does Hiding Information Protect Data?

•Protects the inner-workings (data) of a class
- e.g., range checking for inventory levels (0 – 100)

•Location of the online example:
-/home/219/examples/intro_OO/fifth_noProtection

Driver Inventory
+stockLevel: int

+Inventory()

James Tam

Class Inventory

public class Inventory

{

public int stockLevel;

public Inventory()

{

stockLevel = 0;

}

}

Introduction to Object-Oriented programming 31

James Tam

Class Driver

public class Driver

{

public static void main(String [] args)

{

Inventory chinook = new Inventory();

chinook.stockLevel = 10;

System.out.println("Stock: " + chinook.stockLevel);

chinook.stockLevel = chinook.stockLevel + 10;

System.out.println("Stock: " + chinook.stockLevel);

chinook.stockLevel = chinook.stockLevel + 100;

System.out.println("Stock: " + chinook.stockLevel);

chinook.stockLevel = chinook.stockLevel - 1000;

System.out.println("Stock: " + chinook.stockLevel);

}

}

James Tam

Utilizing Information Hiding: An Example

•Location of the online example:
-/home/219/examples/intro_OO/sixth_encapsulation

+MIN: int

+MAX: int

+CRITICAL: int

-stockLevel: int

+inventoryTooLow():boolean

+add(amount : int)

+remove(amount : int)

+showStockLevel()

Inventory

Driver

Introduction to Object-Oriented programming 32

James Tam

Class Inventory

public class Inventory

{

public final int CRITICAL = 10;

public final int MIN = 0;

public final int MAX = 100;

private int stockLevel = 0;

public boolean inventoryTooLow()

{

if (stockLevel < CRITICAL)

return(true);

else

return(false);

}

James Tam

Class Inventory (2)

public void add(int amount)

{

int temp;

temp = stockLevel + amount;

if (temp > MAX)

{

System.out.println();

System.out.print("Adding " + amount +

" item will cause stock ");

System.out.println("to become greater than " + MAX + "

units (overstock)");

}

else

{

stockLevel = temp;

}

}

Introduction to Object-Oriented programming 33

James Tam

Class Inventory (3)

public void remove(int amount)

{

int temp;

temp = stockLevel - amount;

if (temp < MIN)

{

System.out.print("Removing " + amount +

" item will cause stock ");

System.out.println("to become less than " + MIN + " units

(understock)");

}

else

{

stockLevel = temp;

}

}

public String showStockLevel ()

{ return("Inventory: " + stockLevel); }

}

James Tam

The Driver Class

public class Driver

{

public static void main (String [] args)

{

Inventory chinook = new Inventory();

chinook.add(10);

System.out.println(chinook.showStockLevel());
chinook.add (10);

System.out.println(chinook.showStockLevel());

chinook.add (100);

System.out.println(chinook.showStockLevel());

chinook.remove (21);

System.out.println(chinook.showStockLevel());

// JT: The statement below won't work and for good reason!

// chinook.stockLevel = -999;

}

}

Introduction to Object-Oriented programming 34

James Tam

Add(): Try Adding 100 items to 20 items

public void add(int amount)

{

int temp;

temp = stockLevel + amount;

if (temp > MAX)

{

System.out.println();

System.out.print("Adding " + amount +

" item will cause stock ");

System.out.println("to become greater than " + MAX +

" units (overstock)");

}

else

{

stockLevel = temp;

}

} // End of method add

James Tam

Remove(): Try To Remove 21 Items From 20
Items

public void remove(int amount)

{

int temp;

temp = stockLevel - amount;

if (temp < MIN)

{

System.out.print("Removing " + amount +

" item will cause stock ");

System.out.println("to become less than " + MIN + " units

(understock)");

}

else

{

stockLevel = temp;

}

}

public String showStockLevel ()

{ return("Inventory: " + stockLevel); }

}

Introduction to Object-Oriented programming 35

James Tam

New Terms And Definitions

• Object-Oriented programming

• Class

• Object

• Class attributes

• Class methods

• Object state

• Instantiation

• Constructor (and the Default constructor)

• Method

• Function

James Tam

New Terms And Definitions (2)

• Accessor method (“get”)

• Mutator method (“set”)

• Method overloading

• Method signature

• Encapsulation/information hiding

• Multiplicity/cardinality

Introduction to Object-Oriented programming 36

James Tam

After This Section You Should Now Know

•How to define classes, instantiate objects and access different
part of an object

•What is a constructor and how is it defined and used

•What are accessor and mutator methods and how they can be
used in conjunction with encapsulation

•What is method overloading and why is this regarded as good
style

•How to represent a class using class diagrams (attributes,
methods and access permissions) and the relationships
between classes

•What is encapsulation/information-hiding, how is it done and
why is it important to write programs that follow this principle

James Tam

Copyright Notification

• “Unless otherwise indicated, all images in this presentation
are used with permission from Microsoft.”

slide 72

