
Advanced Java concepts 1

James Tam

Advanced Java Programming

After mastering the basics of Java
you will now learn more complex but
important programming concepts as
implemented in Java.

James Tam

Attributes Vs. Locals

• Attributes
- Declared inside a class definition but outside the body of a method
public class Person {

private String [] childrenName = new String[10];

private int age;

}

• Locals
- Declared inside the body of a method
public class Person {

public nameFamily() {

int i;

Scanner in = new Scanner(System.in);

}

Advanced Java concepts 2

James Tam

Scope Of Attributes Vs. Locals

• New term: Scope is the location where an identifier (attribute,
local, method) may be accessed
- Scope of attributes (and methods): anywhere inside the class definition

- Scope of locals: after the local has been declared until the end of closing
brace (e.g., end of method body)

• Example:
public class Person {

private String [] childrenName = new String[10];

private int age;

public nameFamily() {

int i;

for (i = 0; i < 10; i++) {

childrenName[i] = in.nextLine();

}

}

}

Attribute

(class

scope)
Local

(method

scope)

James Tam

When To Use: Attributes

• Typically there is a separate attribute for each instance of a
class and it lasts for the life of the object.
class Person

{

private String [] childrenName = new String[10];

private int age;

/*

For each person it’s logical to track the age and

the names any offspring.

*/

}

Q: Life of an object?

Advanced Java concepts 3

James Tam

When To Use: Locals

• Local variables: temporary information that will only be used
inside a method

• Q: Does it make sense for every ‘Person’ to have an ‘i’ and
‘in’ attribute?

public nameFamily()

{

int i;

Scanner in = new Scanner(System.in);

for (i = 0; i < 10; i++)

{

childrenName[i] = in.nextLine();

}

}

Scope
of ‘i’
(int)

Scope of
‘in’
(Scanner)

James Tam

A Common Language-Based Convention

• Variables that are used as loop controls are sometimes
declared as local only to the loop.

• Example:
for (int j = 1; j <= 4; j++)

{

System.out.print(j + " "); // In scope

}

// Error: Not in scope

// j = 0;

Advanced Java concepts 4

James Tam

Scoping Rules

• Rules of access
1. Look for a local (variable or constant)

2. Look for an attribute

• General example
public class Person

{

public void method()

{

x = 12;

}

} Reference to

an identifier

First: look for the

definition of a local

identifier e.g., “int x;”

Second: look for the

definition of an attribute

e.g., “private int x;”

James Tam

Scoping Rules: Example

public class C

{

private int x;

public void m()

{

int y;

x = 1;

y = 2;

}

}

Advanced Java concepts 5

James Tam

Shadowing

• The name of a local matches the name of an attribute.

• Because of scoping rules the local identifier will ‘hide’
(shadow) access to the attribute.

• This is a common logic error!
public class Person {

private int age = -1;

public Person(int newAge) {

int age; // Shadows/hides attribute

age = newAge;

}

public void setAge(int age) { // Shadow/hide attribute

age = age;

}

}

Person aPerson = new Person(0); // age is still -1

aPerson.setAge(18); // age is still -1

James Tam

Messaging Passing

•Invoking the methods of another class.

class Driver
{

main ()
{

Game aGame = new Game();
aGame.start();

}
}

class Game
{

Game()
{

:
}
start()
{

:
}

}

Advanced Java concepts 6

James Tam

Relationships Between Classes

• Association relation (“has-a”) exists between classes if an
instance of one class is an attribute of another class.

• Unidirectional association relation:

• Example:
class Brain class Arm

{ {

private Arm left; ...

...

} }

• UML:

Brain Arm

-left:Arm

James Tam

Relationships Between Classes (2)

• Bidirectional association relation:

• Example:
class Student class Teacher

{ {

private Teacher t; private Student s;

} }

• UML:

Teacher

-t:Teacher

Student

-s:Student

Teacher

-t:Teacher

Student

-s:Student

Advanced Java concepts 7

James Tam

Associations And Message Passing

• Having an association between classes allows messages to be
sent from one object to another (objects of one class can call
the methods of another class).

• Unidirectional: messages can be sent from car to engine or car
to lights but not vice versa.

public class Car
{

private Engine anEngine;
private [] Lights carLights;
...
public start()
{

anEngine.ignite();
carLights[0].turnOn();
...

}
}

public class Engine
{

public boolean ignite () {
.. }

}

public class Lights
{

private boolean isOn;
public void turnOn() {

isOn = true;}
}

James Tam

Extra Exercise (Advanced)

• How do we ensure that:
- A particular instance of one class refers to a particular instance of a

second class?

And

- That instance of the second class refers to the previously referred to
instance of the first class?

• Name of the example program:
- /home/233/examples/advanced/1relationships

• What is wrong with the code?

• How can it be fixed?

Advanced Java concepts 8

James Tam

The Driver Class

public class Driver

{

public static void main(String [] args)

{

Student s = new Student();

System.out.println("<< DEBUG: This message will never

appear >>");

}

}

James Tam

Class Student & Teacher

public class Student {

private Teacher t;

public Student() {

t = new Teacher();

}

}

public class Teacher {

private Student s;

public Teacher() {

s = new Student();

}

}

• JT’s hint: similar to the “chicken and the egg” problem except
in reverse!

Advanced Java concepts 9

James Tam

Multiplicity

• It indicates the number of instances that participate in a
relationship

Multiplicity Description

1 Exactly one instance

n Exactly “n” instances {n: a positive integer}

n..m Any number of instances in the inclusive range

from “n” to “m” {n, m: positive integers}

* Any number of instances possible

James Tam

Multiplicity In UML Class Diagrams

Class 1 Class 2

Number of

instances of

class 1 that

participate in

the relationship

Number of

instances of

class 2 that

participate in

the relationship

Advanced Java concepts 10

James Tam

Why Represent A Program In Diagrammatic
Form (UML)?

• Images are better than text for showing structural relations.

• UML can show relationships between classes at a
glance

Text

Jane is Jim’s boss.

Jim is Joe’s boss.

Anne works for Jane.

Mark works for Jim

Anne is Mary’s boss.

Anne is Mike’s boss.

Structure diagram

Jane

Jim Anne

Joe Mark Mike Mary

James Tam

Relationships Between Classes

• Design rule of thumb.

• It can be convenient to create a relationship between classes
(allow methods to be invoked/messages to be passed).

• But unless it is necessary for a relationship to exist between
classes do not create one.

• That’s because each time a method can be invoked there is
the potential that the object whose method is called can be
put into an invalid state (similar to avoiding the use of global
variables to reduce logic errors).

Advanced Java concepts 11

James Tam

Review: Previous Class

• What you have learned in your prerequisite class: some
variables directly contain data:
num1 = 12

num2 = 3.5

ch = 'a'

• What you may have learned your prerequisite class: some variables
‘refer’ to other variables.
list = []

list = [1,2,3]

James Tam

Review: This Class

• In Java when you use objects and arrays there are two things
involved:
- Reference

- Object (or array)

• Example with an object
Person charlie; // Creates reference to object

charlie = new Person("Sheen"); // Creates object

• Example with an array
double [] salaries; // Creates reference to array

salaries = new double[100]; // Creates array

Advanced Java concepts 12

James Tam

Addresses And References

• Real life metaphor: to determine the location that you need to
reach the ‘address’ must be stored (electronic, paper, human
memory)

• Think of the delivery address as something that is a ‘reference’
to the location that you wish to reach.
- Lose the reference (electronic, paper, memory) and you can’t ‘access’ (go

to) the desired location.

121 122 123

123

???

Reference =
123

James Tam

Addresses And References

• A reference to an array does not directly contain the contents
of the array
- Instead the reference contains the address (“refers to”) of the array

Advanced Java concepts 13

James Tam

• Variables are a ‘slot’ in memory that contains ‘one piece’ of
information.
num = 123

• Normally a location is accessed via the name of the variable.
- Note however that each location is also numbered!

- This is the address of a memory location.

Recap: Variables

Image: Curtesy of Rob Kremer

James Tam

References And Objects

•Full example under:
/home/233/examples/advanced/2referenceExamples

public class Person

{

private String name;

public Person() { name = "none"; }

public Person(String newName) { setName(newName);

}

public String getName() { return(name); }

public void setName(String newName) {

name = newName;

}

}

Advanced Java concepts 14

James Tam

References And Objects (2)

• In main():

Person bart;

Person lisa;

bart = new Person("bart");

System.out.println("Bart object name: " + bart.getName());

lisa = bart;

bart = new Person("lisa");

System.out.println("Bart object name: " + bart.getName());

System.out.println("Lisa object name: " + lisa.getName());

James Tam

References And Objects (3)

• What happened?
Person bart;

Person lisa;

bart = new Person("bart");

lisa = bart;

bart = new Person("lisa");

lisa

Address = 200

(Person object)

“lisa”

@ = 100

bart @ = 100@ = 200 Address = 100

(Person object)

“bart”

Advanced Java concepts 15

James Tam

References And Objects (4)

Person bart;

Person lisa;

bart = new Person("bart");

lisa = bart;

bart = new Person("lisa");

Note:

• The object and the reference to the object are separate e.g.,

‘bart’ originally referenced the ‘bart object’ later it referenced the

‘lisa object’

• The only way to access the object is through the reference.

• These same points applies for all references (arrays included)

Reference

Objects that

can be

referenced

James Tam

Shallow Copy Vs. Deep Copies

• Shallow copy (new term, concept should be review)

- Copy the address from one reference into another reference

- Both references point to the same location in memory

A shortcut (‘link’ or ‘ln’

in UNIX) is similar to a

shallow copy. Multiple

things that refer to the

same item (document)

Advanced Java concepts 16

James Tam

Shallow Copy Vs. Deep Copies (2)

• Shallow copy, full example under:
/home/233/examples/advanced/3shallowDeep

mary

bob Age 1266

Person mary = new Person(21);
Person bob = new Person(12);
System.out.println(mary.age + " " +

bob.age);
mary = bob; // Shallow;
bob.age = 66;
System.out.println(mary.age + " " +

bob.age);

Age 21

Memory leak!

James Tam

Shallow Copy Vs. Deep Copies (3)

Making an actual

physical copy is

similar to a deep copy.

• Deep copy (new term, concept should be review)

– It’s not the addresses stored in the references that’s copied

– Instead the data referred to by the references are copied

– After the copy each reference still refers to a different address (the
address refers to a data variable)

Advanced Java concepts 17

James Tam

Shallow Copy Vs. Deep Copies (4)

• Deep copy, full example under:
/home/233/examples/advanced/3shallowDeep

// Mary still 66
bob = new Person(77);
mary.age = bob.age; // Deep
bob.age = 144;
System.out.println(mary.age + " " +

bob.age);

mary Age 66

bob Age 77144

77

James Tam

Automatic Garbage Collection Of Java
References

•Dynamically allocated memory is automatically freed up when
it is no longer referenced (Foo = a class) e.g.,
Foo f1 = new Foo();

Foo f2 = new Foo();

References Dynamic memory

f1(Address of a “Foo”)

f2 (Address of a “Foo”)

Object (Instance of a “Foo”)

Object (Instance of a “Foo”)

Advanced Java concepts 18

James Tam

Automatic Garbage Collection Of
Java References (2)

•Dynamically allocated memory is automatically freed up when
it is no longer referenced e.g.,
f2 = null;

References Dynamic memory

f1

f2

Object (A “Foo”)

Object (A “Foo”)

null

James Tam

Automatic Garbage Collection Of
Java References (3)

• Dynamically allocated memory is automatically freed up when
it is no longer referenced e.g.,
f2 = null;

- Recall that a null reference means that the reference refers to nothing,
it doesn’t contain an address).

References Dynamic memory

f1

f2

Object (A “Foo”)

Object (A “Foo”)

null

Image copyright unknown

Advanced Java concepts 19

James Tam

Caution: Not All Languages Provide Automatic
Garbage Collection!

•Some languages do not provide automatic garbage collection
(e.g., C, C++, Pascal).

•In this case dynamically allocated memory must be manually
freed up by the programmer.

•Memory leak: memory that has been dynamically allocated
(such as via the Java ‘new’ keyword’) but has not been freed up
after it’s no longer needed.
- Memory leaks are a sign of poor programming style and can result in

significant slowdowns.

James Tam

Methods Of Parameter Passing

• Pass by value
- The data stored (the “value” stored) in the parameter is copied

• Pass by reference
- Pass the address of the parameter

- This allows references to the parameter inside the method (the method
has a “reference” to the original parameter).

Advanced Java concepts 20

James Tam

Passing Parameters As Value Parameters

method (p1);

method (<parameter type> <p1>)

{

}

Pass a copy

of the data

James Tam

Passing Parameters As Reference Parameters

method (p1);

method (<parameter type> <p1>)

{

}

Pass the address of the

parameter (refer to the

original parameter in the

method)

Advanced Java concepts 21

James Tam

Which Parameter Passing Mechanism Is Used?

Passed by value

•All ‘simple’ built in types:
- Integers (byte, short, int,
long)

- Floating point (float, double)

- Character (char)

- Boolean (boolean)

Pass by reference

•Objects

•Arrays

•(That is anything that consists
of a reference and the item
referenced).

James Tam

Parameter Passing Example

• Full example under:
/home/233/examples/advanced/4parameters

Advanced Java concepts 22

James Tam

Class Person

public class Person {

private int age;

private String name;

public Person() {

age = -1;

name = "none";

}

public int getAge() {

return(age);

}

public String getName() {

return(name);

}

James Tam

Class Person (2)

public void setAge(int anAge) {

age = anAge;

}

public void setName(String aName) {

name = aName;

}

}

Advanced Java concepts 23

James Tam

Class ParameterExample

public class ParameterExample

{

public void modify(Person aPerson, int aNum)

{

aPerson.setName("Eric Cartman");

aPerson.setAge(10);

aNum = 888;

System.out.println("Person inside modify()");

System.out.println(aPerson.getName() + " " +

aPerson.getAge());

System.out.println("Number inside modify()");

System.out.println(aNum);

}

}

Modifies
parameters here

James Tam

The Driver Class

public class Driver

{

public static void main(String [] args)

{

int num = 13;

Person aPerson = new Person();

ParameterExample pe = new ParameterExample();

System.out.println("Person in main() before edit");

System.out.println(aPerson.getName() + " " +

aPerson.getAge());

System.out.println("Number inside main() before edit");

System.out.println(num);

System.out.println("----------");

Advanced Java concepts 24

James Tam

The Driver Class (2)

pe.modify(aPerson,num);

System.out.println("----------");

System.out.println("Person in main() after edit");

System.out.println(aPerson.getName() + " " +

aPerson.getAge());

System.out.println("Number inside main() after edit");

System.out.println(num);

}

}

James Tam

Previous Example: Analysis

• Why did the parameter that was passed by reference change
and the simple type (passed by value) did not?

Advanced Java concepts 25

James Tam

Benefits Of Employing References

• References require a bit more complexity but provide several
benefits over directly working with objects and arrays.

• Benefit 1: As you have just seen a reference contains the
address of ‘something’ (object, array).
- As long as the address of the object or array is retained changes made

inside the method will persist after the method ends.

- Recall that functions or methods can only return zero or one things
(passing out of a function after it ends).

- Passing by reference (passing into the function just as it starts executing)
allows more than one change to persist after the function has ended:

fun(reference1,reference2,reference3…etc.)

James Tam

Benefits Of Employing References (2)

• Benefit 2: If an array or object is large then it’s more memory
efficient to pass a reference instead.

• Example:
- References are typically 32 or 64 bits in size.

- An array or object will almost always be larger.
char [] array1 = new char[1000000]; // 4 MB

class SocialNetworkUser
{

// attribute for images
// attribute for videos

}

Advanced Java concepts 26

James Tam

Modifying Simple Types (Parameters)

• What to do when only one thing needs to be changed: return
the updated value after the method ends

• What to do when more than one thing needs to be changed:
- Pass an array (e.g., three integers must be modified in a method, then

pass an array of integers with 3 elements).

- Enlist the aid of a wrapper (class).

Image copyright unknown

James Tam

Wrapper Classes

• A class definition built around a simple type
public class Coordinate {

private int xCoordinate;

private int yCoordinate;

...

}

• Benefits illustrated by this example:
- Related pieces of information can be passed into methods together

rather than separately.
Coordinate aLocation = new Coordinate();
Method(aLocation); // vs method(x,y);

- The values of two atomic types x & y can be changed inside a method call
(because an object ‘wraps’ them and the object is passed by reference).

Advanced Java concepts 27

James Tam

Wrapper Classes (2)

• Also Wrapper classes are also used to provide class-like
capabilities (i.e., methods) to simple types (e.g., int) e.g.,
class Integer

-http://docs.oracle.com/javase/6/docs/api/java/lang/Integer.html

-Example useful method parseInt(String): converting strings to integers

int num = Integer.parseInt("123"); // More on this later

James Tam

Arrays: Parameters And Return Values

• Full example under:
/home/233/examples/advanced/5arrayParameters

• Format, method call:
-When the method is called, passing an array as a parameter and storing
a return value appears no different as passing other types.

-Example (list1 and list2 are arrays)

list2 = ape.oneDimensional(list1);

http://docs.oracle.com/javase/6/docs/api/java/lang/Integer.html

Advanced Java concepts 28

James Tam

Arrays: Parameters And Return Values (2)

• Format, method definition:
- Use ‘square brackets’ to indicate that the return value or parameter is an

array.

- Each dimension requires an additional square bracket.

- One dimensional:

public int [] oneDimensional(int [] array1) { ... }

- Two dimensional:

public char [][] twoDimensional(char [][] array1) {

...

}

James Tam

Array Of ‘Objects’

• Although referred to as an array of objects they are actually
arrays of references to objects.

• Recall for arrays: 2 steps are involved to create the array
int [] array; // Reference to array

array = new int[3]; // Creates array of integers

• Recall for objects: 2 steps are required to create the object
Person jim; // Reference to Person object

jim = new Person(); // Creates object

Advanced Java concepts 29

James Tam

Array Of ‘Objects’ (2)

• An array of objects is actually an array of references to
objects.

• So 3 steps are usually required
- Two steps are still needed to create the array

// Step 1: create reference to array
Person [] somePeople;

// Step 2: create array
somePeople = new Person[3];
•In Java after these two steps each array element will be null.
somePeople[0].setAge(10); // Null pointer exception

James Tam

Array Of ‘Objects’ (3)

- The third step requires traversal through array elements (as needed):
create a new object and have the array element refer to that object.
for (i = 0; i < 3; i++)

{

// Create object, array element refers to that object

somePeople[i] = new Person();

// Now that array element refers to an object, a method

// can be called.

somePeople[i].setAge(i);

}

Advanced Java concepts 30

James Tam

Array Of Objects: Example

• Location of the full example:
- /home/233/examples/advanced/6arrayReferences/simple

James Tam

Class Person

public class Person {

private int age;

public Person() {

age = 0;

}

public int getAge() {

return(age);

}

public void setAge(int anAge) {

age = anAge;

}

}

Advanced Java concepts 31

James Tam

Driver Class

public class Driver

{

public static void main(String [] args) {

Person [] somePeople; // Reference to array

int i;

somePeople = new Person[3]; // Create array

for (i = 0; i < 3; i++) {

// Create object, each element refers to a newly

// created object

somePeople[i] = new Person();

somePeople[i].setAge(i);

System.out.println("Age: " +

somePeople[i].getAge());

}

}

}

James Tam

Design Example

• Suppose we wanted to simulate a 2D universe in the form of a
numbered grid (‘World’)
class World

{

private [][] Tardis grid;

}

• Each cell in the grid was either an empty void or contained the
object that traveled the grid (‘Tardis’)1

class Tardis

{

}

1 Tardis and “Doctor Who” © BBC

Advanced Java concepts 32

James Tam

General Description Of Program

• The ‘world/universe’ is largely empty.

• Only one cell contains the Tardis.

• The Tardis can randomly move from cell to cell in the grid.

• Each movement of Tardis uses up one unit of energy.

James Tam

Designing The World

Class World

•Attributes?

•Methods?

Class Tardis

•Attributes?

•Methods?

Advanced Java concepts 33

James Tam

CAUTION: STOP READING AHEAD

• JT’s note: Normally you are supposed to read ahead so you
are prepared for class.

• In this case you will get more out of the design exercise if you
don’t read ahead and see the answer beforehand.

• That will force you to actually think about the problem
yourself (and hopefully get a better feel for some design
issues).

• So for now skip reading the slides that follow this one up to
the one that has a corresponding ‘go’ symbol all over it.

• After we have completed the design exercise in class you
should go back and look through those slides (and the source
code).

Stop Stop

Stop Stop

James Tam

Tardis

• Attributes
- Current energy level

• Methods:
- Randomly generating movement:

•Some method must reduce the energy level as the Tardis moves
•The actual ‘movement’ from square to square in the grid will be a responsibility

of class World because the grid is an attribute of the world.

Advanced Java concepts 34

James Tam

• Attributes
- A 2D array that stores information about the ‘universe’

- Most array elements will be empty (null)

- One element will refer to the Tardis object

- The maximum number of rows and columns

- The current location (row/column) of the Tardis
•Needed to ‘move’ the Tardis from source cell to destination cell

- Theoretically the (row/col) could be (int, int) but because at most one
item can be returned from a method the location will be tracked as 1D
integer array (details in code):
•World.move()->Tardis.calculateCoordinates()

World

[0] [1]

[0] Null

[1] Null Null

Tardis

object
[0] [1]

[0] Null Null

[1] Null

Tardis

object

James Tam

World (2)

• Methods
- Constructor(s) to create the world

- Methods that modify the world (e.g., making sure each array element is
truly null: wipe()

- Displaying the world: display()

- Changing the contents of the objects in the world (e.g., editing the world
or moving objects): move()

Advanced Java concepts 35

James Tam

Manager

• It is responsible for things like determining how long the
simulation runs.

• For very simple programs it may be a part of the World class
(in this case it’s part of the Driver).

• But more complex programs (e.g., need to track many pieces
of information like multiple players, current scores etc. and
simulation rules) may require a separate Manager class.
- The Driver will then likely be responsible for instantiating a Manager

object and calling some method of the manager to start the simulation.

James Tam

END SECTION: Proceed Reading

• You can continue reading ahead to the slides that follow this
one.
- JT: Thank you for your understanding and co-operation.

GO!

GO!

GO!

GO!

Advanced Java concepts 36

James Tam

Source Code: Design Exercise

• Location of the full source code:
/home/233/examples/advanced/6arrayReferences/doctor

James Tam

public class Tardis

{

private int energy;

public Tardis(int startEnergy) {

energy = startEnergy;

}

// max row and column define the size of the world

public int[] calculateCoordinates(int maxRow, int maxColumn) {

Random aGenerator = new Random();

int [] newCoordinates = new int[2];

newCoordinates[0] = aGenerator.nextInt(maxRow);

newCoordinates[1] = aGenerator.nextInt(maxColumn);

energy--;

return(newCoordinates);

}

}

Class Tardis
0

1

2

3

e.g., = 4 e.g., = 7

0, 1, 2, 3

0, 1, 2, 3, 4, 5, 6

10 2 3 4 5

Advanced Java concepts 37

James Tam

Class World: Attributes

public class World

{

private Tardis [][] grid; // Simulated world

private int maxRow; // Row capacity

private int maxColumn; // Column capacity

private int [] currentLocation; // (row/col) of Tardis

James Tam

Class World: Constructor

public World() {

// Element 0: current row the tardis is located

// Element 1: current column the tardis is located

currentLocation = new int[2];

Scanner in = new Scanner(System.in);

System.out.print("Max rows: ");

maxRow = in.nextInt();

System.out.print("Max columns: ");

maxColumn = in.nextInt();

grid = new Tardis[maxRow][maxColumn];

wipe(); // Empties the world, sets everything to null

grid[0][0] = new Tardis(10); // Tardis starts top left

currentLocation[0] = 0; // Tardis row = 0

currentLocation[1] = 0; // Tardis col = 0

display();

}

Advanced Java concepts 38

James Tam

Class World: Initialization

public void wipe()

{

int r;

int c;

for (r = 0; r < maxRow; r++)

{

for (c = 0; c < maxColumn; c++)

{

grid[r][c] = null;

}

}

}

[0] [1] [2]

[0]

[1]

r = 0, c = {0,1,2}

e.g., max = 2

e.g., max = 3

r = 1, c = {0,1,2}

null null null

null null null

James Tam

Class World: Display

public void display()

{

int r;

int c;

for (r = 0; r < maxRow; r++)

{

for (c = 0; c < maxColumn; c++)

{

if (grid[r][c] == null)

System.out.print(".");

else

System.out.print("T");

}

System.out.println();

}

}

0 1 2 3 4 5 6

0

1

2

3

e.g., = 4

e.g., = 7

Move cursor to display new
row on next line

Advanced Java concepts 39

James Tam

Movement

• To make it look like the Tardis has ‘moved’.

• Set the destination (row/column) to refer to the Tardis object.

• Set the source (row/column) to null

[0] [1]

[0] Null

[1] Null Null

Tardis

object
[0] [1]

[0] Null Null

[1] Null

Tardis

object

Before move After move

James Tam

Class World: Move

public void move()

{

// currentLocation 1D array stores Tardis location

int currentRow = currentLocation[0];

int currentColumn = currentLocation[1];

// Keep track of where the Tardis is currently located

int oldRow = currentRow;

int oldColumn = currentColumn;

// Store new (row/col) in 1D array (currentLocation)

currentLocation =

grid[currentRow][currentColumn].calculateCoordinates

(maxRow,maxColumn); Recall:
Tardis.currentCoordinates()
randomly generates a new
(row/column) location

Advanced Java concepts 40

James Tam

Class World: Move (2)

// Update temporary values with current location

currentRow = currentLocation[0];

currentColumn = currentLocation[1];

// Copy tardis from the old location to the new one.

grid[currentRow][currentColumn] = grid[oldRow][oldColumn];

// Check if tardis trying to move onto same square, don't

// 'wipe' if this is the case or tardis will be lost

// (Tardis object becomes a memory leak).

if ((currentRow == oldRow) &&

(currentColumn == oldColumn)) {

System.out.println(“Same location");

}

else {

// ‘wipe’ tardis off old location

grid[oldRow][oldColumn] = null;

}

James Tam

Class World: Move (3)

System.out.println("Tardis re-materializing");

display();

}

Advanced Java concepts 41

James Tam

The Driver Class (Also The “Manager”)

public class Driver

{

public static void main(String [] args) {

Scanner in = new Scanner(System.in);

World aWorld = new World();

int i;

for (i = 0; i < 10; i++) {

aWorld.move();

System.out.println("Hit enter to continue");

in.nextLine();

}

System.out.println("\n<<<Tardis is out of energy,

end simulation>>> \n");

}

}

James Tam

Introducing A New Concept With..Class Sheep!

public class Sheep

{

private String name;

public Sheep()

{

name = "No name";

}

public Sheep(String aName)

{

setName(aName);

}

public String getName() { return name;}

public void setName(String newName) { name = newName; }

}

Advanced Java concepts 42

James Tam

We Create Several Sheep

I’m Bill! I’m
Nellie!

I’m Jim!

Image copyright unknown

James Tam

Question: Who Tracks The Size Of The Flock?

Bill: Me! Nellie:
Me!

Jim: Me!

Image copyright unknown

Advanced Java concepts 43

James Tam

Answer: None Of The Above!

•Information about all instances of a class should not be tracked
by an individual object.

•So far we have used instance fields.

•Each instance of an object contains it’s own set of instance
fields which can contain information unique to the instance.
public class Sheep

{

private String name;

...

}

name: Jim name: Nelliename: Bill

Object Object Object

James Tam

The Need For Static (Class Attributes)

•Static fields: One instance of the attribute exists for the class
(not one attribute for each instance of the class)

•JT’s note: in Java static DOES NOT specify unchanging
(constant)
- Reminder: the keyword ‘final’ signifies constant (unchanging)

Class Sheep

flockSize

name: Jim name: Nelliename: Bill

Object Object Object

Advanced Java concepts 44

James Tam

Static (Class) Methods

•Are associated with the class as a whole and not individual
instances of the class.

–Can be called without having an instances (because it’s
called through the class name not a reference/instance
name).

–Instance method:
Scanner in = new Scanner(System.in);
in.nextInt(); // referenceName.method()

–Class Method:
double squareRoot = Math.sqrt(9); // ClassName.method()

•Typically implemented for classes that are never instantiated
e.g., class Math.

James Tam

Accessing Static Methods/Attributes

•Inside the class definition
Format:

<Access permission> static <attribute or method name>

Example:
class Sheep
{

private static int flockSize = 0;

public Sheep()
{

flockSize++;
}

}

Advanced Java concepts 45

James Tam

Accessing Static Methods/Attributes (2)

•Outside the class definition
Format:

<Class name>.<attribute or method name>

Example:

Sheep.getFlockSize();

James Tam

Static Data And Methods: UML Diagram
•Location of the online example:

-/home/233/examples/advanced/6classAttributes

Driver

Sheep

-flockSize:int

-name: String

+Sheep()

+Sheep(aName:String)

+getFlockSize():int

+getName():String

+setName(aName:String):
void

Static attribute is

specified using

underlining

Static attribute is

specified using

underlining

Advanced Java concepts 46

James Tam

Static Data And Methods: The Driver Class

public class Driver

{

public static void main(String [] args) {

System.out.println();

System.out.println("You start out with " +

Sheep.getFlockSize() +

" sheep");

System.out.println("Creating flock...");

Sheep nellie = new Sheep("Nellie");

Sheep bill = new Sheep("Bill");

Sheep jim = new Sheep();

System.out.println("Current count " +

Sheep.getFlockSize());

}

}

James Tam

Static Data And Methods: The Sheep Class

public class Sheep

{

private static int flockSize = 0;

private String name;

public Sheep() {

flockSize++;

name = "No name";

}

public Sheep(String aName) {

flockSize++;

setName(aName);

}

public static int getFlockSize () { return flockSize; }

public String getName() { return name;}

public void setName(String newName) { name = newName; }

}

Advanced Java concepts 47

James Tam

Rules Of Thumb: Instance Vs. Class Fields

•Reminder:
- Instance field:

•Static keyword is not used
•There is one instance for each object created
•E.g., class Person { private int age; }

- Class field:
•Requires the static keyword
•There is one instance for the entire class
•E.g., class Person { private static int numberPeople; }

•Rules of thumb:
- Make it an instance field if the data can vary between instances e.g., age,

height, weight

- Make it a class field if the data relates to all instances e.g., number of
objects created.

•Possibly it may apply if no instances will be created e.g., a debug flag to specify
the mode that the program is operating under

James Tam

Rule Of Thumb: Instance Vs. Class Methods

•Reminder:
- Instance method e.g.,
class Person { private int age = 0;

public void haveBirthDay() { age++; }

}

- Class method e.g.,
class Math {

public static double square(double num) {return(num*num);
} }

Advanced Java concepts 48

James Tam

Rule Of Thumb: Instance Vs. Class Methods (2)

• Rule of thumb
- Static methods

•If a method can be invoked regardless of the number of instances that exist
(e.g.., the method can be run when there are no instances) then it probably
should be a static method.

•If it never makes sense to instantiate an instance of a class then the method
should probably be a static method.

E.g., the class doesn’t have any variable attributes only static constants such
as class Math no objects are instantiated (more coverage later)

- Non static methods
•If the above rules don’t apply then the method should likely be an instance

method e.g., the method operates on an instance field.

James Tam

Universally Accessible Constants

• What you currently know
–How to declare constants that are local to a method

class Driver {

main() {

final int A_CONST = 10;

}

}

• If you need constants that are accessible throughout your
program then declare them as class constants.

Advanced Java concepts 49

James Tam

Declaring Class Constants

• Format:
public class <class name>

{

public final static <type> <NAME> = <value>;

}

• Example:
public class Person

{

public final static int MAX_AGE = 144;

}

• Notes:
- The keyword “final” signifies something that cannot change (a constant)

- Because MAX_AGE is a constant the access level can be public.

James Tam

Accessing Class Constants

• Format (outside of the class definition)1:
<Class name>.<constant name>;

• Example (outside of the class definition):
main()

{

System.out.println("Max life span: " + Person.MAX_AGE);

}

• Accessing a class constant inside the class where it’s been
defined does not require the name of the class
public class Person {

public final static int MAX_AGE = 144;

public void sayMax() { System.out.println(MAX_AGE); }

}

Advanced Java concepts 50

James Tam

Static Vs. Final

•Static: Means there’s one instance of the attribute for the class
(not individual instances for each instance (object) of the class)

•Final: Means that the attribute cannot change (it is a constant)

public class Foo

{

public static final int num1= 1;

private static int num2;

public final int num3 = 1;

private int num4;

: :

}

/* Why bother (waste) */

/* Rare */

James Tam

An Example Class With A Static
Implementation

public class Math

{

// Public constants

public static final double E = 2.71…

public static final double PI = 3.14…

// Public methods

public static int abs(int a);

public static long abs(long a);

: :

}

•For more information about this class go to:
- http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html

Advanced Java concepts 51

James Tam

Should A Class Be Entirely Static?

•Usually purely static classes (cannot be instantiated) have only
methods and no data (maybe some constants).
-Rare: mostly cases there’s variable data that is different from object-to-
object so few classes are purely static

•Example (purely for illustration):
Math math1 = new Math();

Math math2 = new Math();

// What’s the difference? Why bother?

math1.abs() vs. math2.abs();

•When in doubt DO NOT make attributes and methods static.

James Tam

Self Reference: The ‘This’ Reference

•From every (non-static) method of an object there exists a reference to the
object (called the “this” reference) 1

main(String args []) {

int x;

Person fred = new Person();

Person barney = new Person();

fred.setAge(35);

}

public class Person {

private int age;

public void setAge(int anAge) {

age = anAge;

}

...

}

1 Similar to the ‘self’ keyword of Python except that ‘this’ is a syntactically enforced name.

The ‘this’ reference is implicitly
passed as a parameter to all non-static
methods. One use of ‘this’ is to
distinguish which object’s method is
being invoked (in this case Fred vs.
Barney)

This is one reason why methods must be
invoked via a reference name (the
contents of the reference ‘fred’ will be
copied into the ‘this’ reference (so
both point to the ‘Fred’ object).

Advanced Java concepts 52

James Tam

The ‘This’ Reference Is Automatically
Referenced Inside (Non-Static) Methods

public class Person {

private int age;

public void setAge(int anAge) {

// These two statements are equivalent

age = anAge;

this.age = anAge;

}

}

James Tam

Parameter Types: Explicit Vs. Implicit

•Explicit parameter(s): explicitly passed (you can see them when
the method is called and defined).
fred.setAge(10); // 10 explicit

barney.setAge(num); // num explicit

public void setAge(int age) { ... } // age explicit

•Implicit parameter: implicitly passed into a method
(automatically passed and cannot be explicitly passed): the
‘this’ reference.
public void setAge(int age) { ... } // ‘this’ is implicit

Advanced Java concepts 53

James Tam

Benefits Of ‘This’: Attributes

•Another side benefit is the this reference can make it very
clear which attributes are being accessed/modified.
public class Person

{

private int age;

public void setAge(int age) {

this.age = age;

}

}

Parameter
(local
variable)
‘age’

Attribute
‘age’

James Tam

Benefits Of ‘This’: Parameters

• Another side benefit is the this reference can make it clear
which object is being accessed e.g., when a class method takes
as a explicit parameter an instance of that class1

main (String [] args) {

Person fred = new Person(“Fred”);

Person barney = new Person(“Barney”);

barney.nameBestBuddy(fred); // JT: Explicit? Implicit?

}

// JT: What will be the output?

public void nameBestBuddy(Person aPerson) {

println(this.name + " best friend is " + aPerson.name);

}

1 JT: more on this one later – see the ‘equals()’ method

Advanced Java concepts 54

James Tam

Benefits Of ‘This’: Scope

• Recall: according to scoping rules, local variables are not
accessible outside of that function or method (unless returned
back to the caller or passed into another method).

main (String [] args) {
int age = 27;
Person jim = new Person();
jim.setAge(age);

}
class Person {

public void setAge(int age) {
this.age = age;

}

main()

age 27

jim.setAge()

jim (imp)

age 27this

jim .age

27 (exp)

Normally the object referred to by the ‘jim’ reference not
accessible outside of main() but the ‘this’ reference
contains it’s address (implicit pass by reference)

James Tam

•Recall: static methods do not require an object to be
instantiated because they are invoked via the class name not a
reference name.
int result = Math.abs(-12);

•That means static methods do not have the implicit ‘this’
parameter passed in.

•Also recall I said for now avoid [for the ‘Driver’ class]:
- Defining attributes for the Driver

- Defining methods for the Driver (other than the main method)

Static Methods: No ‘This’ Reference

Advanced Java concepts 55

James Tam

This()

• Can be used when constructors have been overloaded.

• Calls one version of the constructor from another constructor.

• Example program:
/home/233/examples/advanced/8thisMethod

James Tam

The Driver Class

public class Driver

{

public static void main(String [] args)

{

Person aPerson = new Person();

aPerson.show();

aPerson = new Person(99);

aPerson.show();

aPerson = new Person("Bob");

aPerson.show();

}

}

Advanced Java concepts 56

James Tam

Class Person

public class Person {

private int age;

private String name;

public Person() {

age = -1;

name = "none";

}

public Person(int anAge) {

this();

age = anAge;

}

James Tam

Class Person (2)

public Person(String aName) {

this();

name = aName;

}

public void show()

{

System.out.println(age + " " + name);

}

}

Advanced Java concepts 57

James Tam

Displaying The Current State Of Objects

•The toString() method desplays the state of a particular
object (contents of important attributes).
- Returns a string representation of the state.

•It will automatically be called whenever a reference
to an object is passed as a parameter to
“print()/println()”.

James Tam

toString() Example

•Location of the full example:
- /home/233/examples/advanced/9toString

Advanced Java concepts 58

James Tam

Class Person

public class Person

{

private int height;

private int weight;

private String name;

public Person(String name, int height, int weight)

{

this.name = name;

this.height = height;

this.weight = weight;

}

James Tam

Class Person (2)

public String getName()

{

return(name);

}

public int getHeight()

{

return(height);

}

public int getWeight()

{

return(weight);

}

Advanced Java concepts 59

James Tam

Class Person (3)

public String toString()

{

String s;

s = "Name: " + name + "\t";

s = s + "Height: " + height + "\t";

s = s + "Weight: " + weight + "\t";

return(s);

}

}

James Tam

The Driver Class

public class Driver

{

public static void main(String [] args)

{

Person jim = new Person("Jim",69,160);

System.out.println("Attributes via accessors()");

System.out.println("\t" + jim.getName() + " " +

jim.getHeight() +

" " + jim.getWeight());

System.out.println("Attributes via toString()");

System.out.println(jim);

}

}

Advanced Java concepts 60

James Tam

Comparing Objects

•Recall from the discussion of parameter passing (pass by
reference) that a reference contains the address of an object or
array.

•Using the comparison operator on the references ‘==‘ will only
determine if the address (and not data) is the same.
Person p1 = new Person(12);

Person p2 = new Person(12);

if (p1 == p2)

p1

Person object

Age = 12

p2

Person object

Age = 12

James Tam

Comparing Objects (2)

•Either each attribute of each object must be manually
compared or else some form of equals() method must be
implemented.

•Class String has two methods:
- compareTo() # ABC not same as Abc

- compareToIgnoreCase() # ABC same as abc

Advanced Java concepts 61

James Tam

Implementing Equals()

•Location of the full example:
- /home/233/examples/advanced/10equals

James Tam

Class Person

public class Person {

private int height;

private int weight;

public Person(int height, int weight) {

this.height = height;

this.weight = weight;

}

public int getHeight() {

return(height);

}

public int getWeight() {

return(weight);

}

Advanced Java concepts 62

James Tam

Class Person (2)

public void setHeight(int height) {

this.height = height;

}

public void setWeight(int weight) {

this.weight = weight;

}

public boolean equals(Person compareTo) {

boolean flag = true;

// Access to compareTo privates allowed here!

if (this.height != compareTo.height ||

this.weight != compareTo.weight)

flag = false;

return(flag);

}

}

Implicit: Jim Explicit: Bob

James Tam

The Driver Class

public class Driver

{

public static void main(String [] args)

{

Person jim = new Person(69,160);

Person bob = new Person(72,175);

Advanced Java concepts 63

James Tam

The Driver Class (2)

System.out.println("Different data, addresses");

System.out.println("Compare data via accessors()");

if (jim.getHeight() == bob.getHeight() &&

jim.getWeight() == bob.getWeight())

System.out.println("\tObjects same data");

else

System.out.println("\tNot equal");

System.out.println("Compare data via equals()");

if (jim.equals(bob) == true)

System.out.println("\tObjects same data");

else

System.out.println("\tNot equal");

System.out.println("Compare addresses");

if (jim == bob)

System.out.println("\tSame address");

else

System.out.println("\tDifferent addresses");

new
Person(69,160);

new
Person(72,175);

James Tam

The Driver Class (3)

System.out.println();

System.out.println("Same data, different addresses");

jim.setHeight(72);

jim.setWeight(175);

if (jim.equals(bob) == true)

System.out.println("\tObjects same data");

else

System.out.println("\tNot equal");

System.out.println("Compare addresses");

if (jim == bob)

System.out.println("\tSame address");

else

System.out.println("\tDifferent addresses");

Person(72,175); # via set()

Person(72,175);

Advanced Java concepts 64

James Tam

The Driver Class (4)

System.out.println();

System.out.println("Same data, different addresses");

jim.setHeight(72);

jim.setWeight(175);

if (jim.equals(bob) == true)

System.out.println("\tObjects same data");

else

System.out.println("\tNot equal");

System.out.println("Compare addresses");

if (jim == bob)

System.out.println("\tSame address");

else

System.out.println("\tDifferent addresses");

Person(72,175); # via set()

Person(72,175);

James Tam

The Driver Class (5)

System.out.println();

System.out.println("Same addresses");

jim = bob;

if (jim == bob)

System.out.println("\tSame address");

else

System.out.println("\tDifferent addresses");

jim = bob;

Advanced Java concepts 65

James Tam

New Terminology/Definitions

• Scope

• Shadowing

• Message passing

• Association relation (bidirectional, unidirectional)

• Shallow and deep copy

• Automatic garbage collection

• Memory leak

• Parameter passing: Pass by value, pass by reference

• Static attributes and methods

• Final attributes

• Object state

James Tam

After This Section You Should Now Know

•What is meant by scope

•Scoping rules for attributes, methods and locals
- Design issues

•When should something be declared as local vs. an attribute

•The hierarchy of scoping rules
- How locals can shadow attributes

•What is meant by message passing

•What is an association, how do directed and non-directed
associations differ, how to represent associations and
multiplicity in UML

•What is multiplicity and what are kinds of multiplicity
relationships exist

•Design and technical issues related to association relations

Advanced Java concepts 66

James Tam

After This Section You Should Now Know (2)

• References
- How references and objects are related

- The difference between a deep vs. shallow copy

- What is the difference between comparing references vs. objects

- What is automatic garbage collection and how it’s related to the use of
references

• How the two methods of parameter passing work, what types
are passed using each mechanism

• What are the benefits of employing references

• What is a wrapper class and the value provided

James Tam

After This Section You Should Now Know (3)

• How to pass arrays as parameters and return them from
methods

• Arrays of 'objects‘
- Why they are really arrays of references

- How to declare such an array, create and access elements

• How to create a simple simulation using an array of references

• Static attributes and methods
- How to create statics

- How to access statics

- When something should be static vs. non-static (instance)

- How to represent static in UML

• How to declare class constants
- The difference between static and final

Advanced Java concepts 67

James Tam

After This Section You Should Now Know (4)

• What is the 'this' reference
- When it is and is not an implicit parameter

- What's the difference between implicit and explicit parameters

- What are the benefits of having a this parameter

• How to use this() to call overloaded constructors within
another constructor

• How to display the state of an object by implementing a
toString() method

• How to check for equality by implementing an equals()
method

James Tam

Copyright Notification

• “Unless otherwise indicated, all images in this presentation
are used with permission from Microsoft.”

slide 135

