
11/18/2016

Object-Oriented programming 1

CPSC 231:
Classes and Objects

You will learn how to define new types
of variables that can have custom
attributes and capabilities

Some Drawbacks Of Using A List

• Which field contains what type of information? This isn’t
immediately clear from looking at the program statements.
client = [“xxxxxxxxxxxxxxx",

“0000000000",

“xxxxxxxxx",

0]

• Is there any way to specify rules about the type of information
to be stored in a field e.g., a data entry error could allow
alphabetic information (e.g., 1-800-BUY-NOWW) to be entered
in the phone number field.

The parts of a composite list can

be accessed via [index] but they

cannot be labeled (what do these

fields store?)

11/18/2016

Object-Oriented programming 2

James Tam

Classes

• Can be used to define a generic template for a new non-
homogeneous composite type.

• It can label and define more complex entities than a list.

• This template defines what an instance (example) of this new
composite type would consist of but it doesn’t create an
instance.

Copyright information unknown

James Tam

Classes Define A Composite Type

• The class definition specifies the type of information (called
“attributes”) that each instance (example) tracks.

Name:

Phone:

Email:

Purchases:

Name:

Phone:

Email:

Purchases:

Name:

Phone:

Email:

Purchases:

11/18/2016

Object-Oriented programming 3

Defining A Class1

• Format:
class <Name of the class>:

name of first field = <default value>

name of second field = <default value>

• Example:
class Client:

name = "default"

phone = "(123)456-7890"

email = "foo@bar.com"

purchases = 0

Describes what information

that would be tracked by a

“Client” but doesn’t actually

create a client variable

Note the convention: The

first letter is capitalized.

Defining a ‘client’ by using a list (yuck!)
client = [“xxxxxxxxxxxxxxx",

“0000000000",
“xxxxxxxxx",
0]

1 Although capitalization of the class name isn’t the Python standard it is the standard with many other programming
languages: Java, C++

Creating An Instance Of A Class

• Creating an actual instance (instance = object) is referred to as

• Format:
<reference name> = <name of class>()

• Example:
firstClient = Client()

instantiation

11/18/2016

Object-Oriented programming 4

Defining A Class Vs. Creating An Instance Of That
Class

• Defining a class
– A template that describes that

class: how many fields, what
type of information will be
stored by each field, what
default information will be
stored in a field.

• Creating an object
– Instances of that class (during

instantiation) which can take
on different forms.

Image copyright unknown

Accessing And Changing The Attributes

•Format:
<reference name>.<field name> # Accessing value

<reference name>.<field name> = <value> # Changing value

•Example:
aClient.name = "James"

11/18/2016

Object-Oriented programming 5

The Client List Example Implemented Using
Classes And Objects

• Name of the online example: client.py

class Client:

name = "default"

phone = "(123)456-7890"

email = "foo@bar.com"

purchases = 0

The Client List Example Implemented
Using Classes (2)

def main():

firstClient = Client()

firstClient.name = "James Tam"

firstClient.email = "tam@ucalgary.ca"

print(firstClient.name)

print(firstClient.phone)

print(firstClient.email)

print(firstClient.purchases)

main()

name = "default"
phone = "(123)456-7890"
email = "foo@bar.com"
purchases = 0

name = "James Tam"
email = "tam@ucalgary.ca"

11/18/2016

Object-Oriented programming 6

What Is The Benefit Of Defining A Class?

• It allows new types of variables to be declared.

• The new type can model information about most any arbitrary
entity:

–Car

–Movie

–Your pet

–A bacteria or virus in a medical simulation

–A ‘critter’ (e.g., monster, computer-controlled player) a video game

–An ‘object’ (e.g., sword, ray gun, food, treasure) in a video game

–A member of a website (e.g., a social network user could have
attributes to specify the person’s: images, videos, links, comments and
other posts associated with the ‘profile’ object).

What Is The Benefit Of Defining A Class (2)

• Unlike creating a composite type by using a list a
predetermined number of fields can be specified and those
fields can be named.
– This provides an error prevention mechanism

class Client:

name = "default"

phone = "(123)456-7890"

email = "foo@bar.com"

purchases = 0

firstClient = Client ()

print(firstClient.middleName) # Error: no such field defined

11/18/2016

Object-Oriented programming 7

Classes Have Attributes

ATTRIBUTES
Name:
Phone:
Email:
Purchases:

BEHAVIORS
Open account
Buy investments
Sell investments
Close account

Image of James curtesy of James
Tam

But Also Behaviors

Class Methods (“Behaviors”)

• Functions: not tied to a composite type or object
– The call is ‘stand alone’, just name of function

– E.g.,

– print(), input()

• Methods: must be called through an instance of a composite1.
– E.g.,

filename = "foo.txt"

name, suffix = filename.split('.')

• Unlike these pre-created functions, the ones that you associate
with classes can be customized to do anything that a regular
function can.

• Functions that are associated with classes are referred to as
methods.

String Method operating on
that string

1 Not all composites have methods e.g., arrays in ‘C’ are a composite but don’t have methods

11/18/2016

Object-Oriented programming 8

James Tam

Defining Class Methods

Format:
class <classname>:

def <method name> (self, <other parameters>):

<method body>

Example:
class Person:

name = "I have no name :("

def sayName (self):

print ("My name is...", self.name)

Unlike functions, every

method of a class must

have the ‘self’ parameter

(more on this later)

When the attributes are

accessed inside the

methods of a class they

MUST be preceded by the

suffix “.self”

James Tam

Defining Class Methods: Full Example

• Name of the online example: person1.py

class Person:

name = "I have no name :("

def sayName(self):

print("My name is...", self.name)

def main():

aPerson = Person()

aPerson.sayName()

aPerson.name = "Big Smiley :D"

aPerson.sayName()

main()

11/18/2016

Object-Oriented programming 9

James Tam

What Is The ‘Self’ Parameter

• Reminder: When defining/calling methods of a class there is
always at least one parameter.

• This parameter is called the ‘self’ reference which allows an
object to access attributes inside its methods.

• ‘Self’ needed to distinguish the attributes of different
objects of the same class.

• Example:
bart = Person()

lisa = Person()

lisa.sayName()

def sayName():
print "My name is...", name

Whose name is

this? (This won’t

work)

James Tam

The Self Parameter: A Complete Example

• Name of the online example: person2.py

class Person:
name = "I have no name :("
def sayName(self):

print("My name is...", self.name)

def main():
lisa = Person()
lisa.name = "Lisa Simpson, pleased to meet you."
bart = Person()
bart.name = "I'm Bart Simpson, who the hek are

you???!!!"

lisa.sayName()
bart.sayName()

main()
“The Simpsons” Fox

11/18/2016

Object-Oriented programming 10

James Tam

Recap: Accessing Attributes & Methods

• Inside the class definition (inside the body of the class
methods)

– Preface the attribute or method using the ‘self’ reference

class Person:

name = "No-name"

def sayName(self):

print("My name is...", self.name)

• Outside the class definition
– Preface the attribute or method using the name of the reference used

when creating the object.
def main():

lisa = Person()
bart = Person()
lisa.name = "Lisa Simpson, pleased to meet you."

James Tam

Initializing The Attributes Of A Class

• Classes have a special method that can be used to initialize the
starting values of a class to some specific values.

• This method is automatically called whenever an object is
created.

• Format:
class <Class name>:

def __init__(self, <other parameters>):

<body of the method>

• Example:
class Person:

name = ""

def __init__(self):

self.name = "No name"

No spaces here

This design

approach is

consistent with

many

languages

11/18/2016

Object-Oriented programming 11

James Tam

Initializing The Attributes Of A Class

• Because the ‘init()’ method is a method it can also be called with
parameters which are then used to initialize the attributes.

• Example:
Attribute is set to a default in the class definition and then the
attribute can be set to a non-default value in the init() method.

(Not standard Python but a common approach with many languages)

class Person

name = "Default name" # Create attribute here

def __init___(self, aName):

self.name = aName

–OR

Create the attribute in the init() method. (Approach often used in

Python).

class Person

def __init___(self, aName):

self.name = aName # Create attribute here

James Tam

Full Example: Using The “Init()” Method

• The name of the online example: init_method1.py

class Person:

name = "Nameless bard"

def __init__(self, aName):

self.name = aName

def main():

aPerson = Person("Finder Wyvernspur")

print(aPerson.name)

main()

“Nameless bard” & “Finder Wyvernspur” Wizards of the Coast (April 24, 2012)

11/18/2016

Object-Oriented programming 12

James Tam

Constructor: A Special Method

• Constructor method: a special method that is used when
defining a class and it is automatically called when an object of
that class has been created.

– E.g., aPerson = Person() # This calls the constructor

• In Python this method is named ‘init’.

• Other languages may require a different name for the syntax
but it serves the same purpose (initializing the fields of an
object as it’s being created).

• This method should never have a return statement that returns
a value.
– Should be (if return is needed) “return”

– Never return a type e.g., return(12)

James Tam

Objects Employ References

aPerson = Person()

Calls the constructor
and creates an object

Creates the
reference
variable

Assign the address
of the object into
the reference

11/18/2016

Object-Oriented programming 13

James Tam

Objects Employ References (2)

• Similar to lists, objects are accessed through a reference.

• The reference and the object are two separate memory
locations.

• Name of the online example: objectReference.py
class Person:

age = 0

name = "none"

def __init__(self,newAge,newName):

self.age = newAge

self.name = newName

def displayAge(aPerson):

print("%s age %d" %(aPerson.name,aPerson.age))

James Tam

Objects Employ References (3)

def start():

person1 = Person(13,"Person2")

person2 = person1

person2.age = 888

displayAge(person1)

displayAge(person2)

print()

start()

Age: 13

Name: Person2

Address = 1000

person1 @=1000

person2 @=1000 888

@=2000

11/18/2016

Object-Oriented programming 14

James Tam

Objects Employ References (2)

def start():

person1 = Person(13,"Person2")

person2 = person1

person2.age = 888

displayAge(person1)

displayAge(person2)

print()

person1 = Person(666,"Person1")

displayAge(person1)

displayAge(person2)

start()

Age: 13

Name: Person2

Address = 1000

person1 @=1000

person2 @=1000

Age: 888

Name: Person1

Address = 2000

@=2000

James Tam

Default Parameters

• Similar to other methods, ‘init’ can be defined so that if
parameters aren’t passed into them then default values can be
assigned.

• Example:
def __init__ (self, name = "I have no name"):

• Method calls (to ‘init’), both will work
smiley = Person()

jt = Person("James")

This method can be called

either when a personalized

name is given or if the name

is left out.

11/18/2016

Object-Oriented programming 15

James Tam

Default Parameters: Full Example

• Name of the online example: init_method2.py

class Person:

name = ""

def __init__(self, name = "I have no name"):

self.name = name

def main():

smiley = Person()

print("My name is...", smiley.name)

jt = Person("James")

print("My name is...", jt.name)

main()

Modules: Dividing Up A Large Program

• Module: In Python a module contains a part of a program in a
separate file (module name matches the file name).

• In order to access a part of a program that resides in another
file you must ‘import’ it.1

• Example:

def fun ():
print("I'm fun!")

File: functions.py
import functions

def main():
functions.fun()

main()

File: driver.py

1 Import syntax:

From <file name> import <function names> # Import some functions

From <file name> import * # Import all functions

OR

import <file name> # Import only module/file

11/18/2016

Object-Oriented programming 16

James Tam

Function Modules: Complete Example

• Subdirectory name with all the files for this example:
modules1
– Run the program method type: “python driver.py”

<< In module file1.py >>

def fun1():

print("I'm fun1!")

def fun2():

print("I'm fun2!")

<< In module file2.py >>

def fun3():

print("I'm fun3!")

James Tam

Modules: Complete Example (2)

<< In file driver.py >>

from file1 import fun1, fun2 #Import file name, function name

import file2 #Imports only file name

def start():

fun1()

fun2()

file2.fun3()

main ()

Note the difference in how

fun1 & fun2 vs. fun3 are called

11/18/2016

Object-Oriented programming 17

James Tam

Modules And Classes

• Class definitions are frequently contained in their own module.

• A common convention is to have the module (file) name match
the name of the class.

• To use the code of class Person from another file module you
must include an import:
from <filename> import <class name>

from Person import Person

class Person:
def fun1(self):

print(“fun1”)

def fun2 (self):
print(“fun2”)

Filename: Person.py

James Tam

Modules And Classes: Complete Example

• Subdirectory name with all the files for this example:
modules2
– To run the program type: “python Driver.py”

<< File Driver.py >>

from Greetings import *

def start():

aGreeting = Greeting()

aGreeting.sayGreeting()

start()

When importing modules containing class definitions the syntax is (star ‘*’ imports everything):

From <filename> import <classes to be used in this module>

11/18/2016

Object-Oriented programming 18

James Tam

Modules And Classes: Complete Example (2)

<< File Greetings.py >>

class Greetings:

def sayGreeting(self):

print("Hello! Hallo! Sup?! Guten tag/morgen/aben! Buenos! Wei! \

Konichiwa! Shalom! Bonjour! Salaam alikum! Kamostaka?")

James Tam

Calling A Classes’ Method Inside Another Method Of
The Same Class

• Similar to how attributes must be preceded by the keyword
‘self’ before they can be accessed so must the classes’
methods:

• Example:
class Bar:

x = 1

def fun1(self):

print(self.x) # Accessing attribute ‘x’

def fun2(self):

self.fun1() # Calling method ‘fun1’

11/18/2016

Object-Oriented programming 19

James Tam

Naming The Starting Module

• Recall: The function that starts a program (first one called)
should have a good self-explanatory name e.g., “start()” or
follow common convention e.g., “main()”

• Similarly the file module that contains the ‘start()’ or
‘main()’ function should be given an appropriate name e.g.,
“Driver.py” (it’s the ‘driver’ of the program or the starting
point)

def start():
#Instructions

start()

Filename: “Driver.py”

James Tam

Complete Example: Accessing Attributes And
Methods: Person Module

• Subdirectory name with all the files for this example:
modules3
– To start the program run the ‘start’ method (type: “python
Driver.py” because ‘start()’ resides in the ‘Driver’ module.

<< Person.py >>

class Person:

name = "Not named yet"

age = 0

def __init__(self,newName,newAge):

self.name = newName

self.age = newAge

11/18/2016

Object-Oriented programming 20

James Tam

Complete Example: Accessing Attributes And Methods:
Person Module (2)

def haveBirthday(self):

print("Happy Birthday!")

self.mature()

def mature(self):

self.age = self.age + 1

James Tam

Complete Example: Accessing Attributes And Methods: The
“Driver” Module

<< Driver.py >>

from Person import Person

def main():

aPerson = Person("Cartman",8)

print("%s is %d." %(aPerson.name,aPerson.age))

aPerson.haveBirthday()

print("%s is %d." %(aPerson.name,aPerson.age))

main()

def __init__(self,newName,newAge):
self.name = newName
self.age = newAge

def haveBirthday(self)
print("Happy Birthday!")
self.mature()

def mature(self):
self.age = self.age + 1

11/18/2016

Object-Oriented programming 21

After This Section You Should Now Know

• How to define an arbitrary composite type using a class

• What are the benefits of defining a composite type by using a
class definition over using a list

• How to create instances of a class (instantiate)

• How to access and change the attributes (fields) of a class

• How to define methods/call methods of a class

• What is the ‘self’ parameter and why is it needed

• What is a constructor (__init__ in Python), when it is used
and why is it used

• How to write a method with default parameters

• How to divide your program into different modules

James Tam

Copyright Notification

• “Unless otherwise indicated, all images in this presentation
are used with permission from Microsoft.”

slide 42

