
3/21/2018

Administrative and course introduction 1

VBA (Visual Basic For Applications)
Programming Part II

• Objects
• Named constants
• Collections
• Nesting
• Useful VBA functions
• Linking Office applications

Real-World Objects

• You are of course familiar with objects in the everyday world.
– These are physical entities

• Each object is described by its properties (information)

• Each object can have a set of operations associated with it
(actions)

3/21/2018

Administrative and course introduction 2

Example: A Person

Example properties (physical and
other attributes): information
• Age
• Height
• Name
• Hair color
• …

Example operations (actions, in
VBA they are called ‘methods’):
capabilities
• Walk
• Talk
• Eat
• Sleep
• Drink
• Excrete
• …

VBA Object

• Similar to everyday objects VBA-Objects have
properties and actions
– Properties: information that describe the object

• E.g., the name of a document, size of the document, date
modified, number of words etc.

– Capabilities: actions that can be performed (sometimes
referred to as ‘methods’ or ‘functions’)

• E.g., save, print, spell check etc.

3/21/2018

Administrative and course introduction 3

Common VBA Objects

• Application: the MS-Office program running (for the
programs you see in CPSC 203 it will always be MS-Word)

• ActiveDocument

• Selection

• When enter one of these keywords in the editor followed by
the ‘dot’ you can see more information.

Take advantage of the benefits of VBA:
1. The list of properties and methods is a

useful reminder if you can’t remember
the name

2. If you don’t see the pull down then this is
clue that you entered the wrong name
for the object

Example: What Are The Three Objects

• Application:
•MS-Word

• Active/current
Document:

•“tam template”

• Selection
•“Foo!”

3/21/2018

Administrative and course introduction 4

Using Pre-Built Capabilities/Properties Of Objects

• Format:
<Object name>.<method or attribute name>

• Example:
Sub ApplicationTest()

MsgBox (Application.Windows.Count)

End Sub

Application.Windows.Count

Object referred to:
‘Application’

Accessing the Windows property of Word (the
application)
• Info about the windows currently opened

Property of Window:
• Number

Properties Vs. Methods/Functions

• Recall
– Property: information about an object

– Method: capabilities of an object (possible actions)

Property:
current cell

Using the
‘average()’
function

3/21/2018

Administrative and course introduction 5

Properties Vs. Methods: Appearance

Methods

Property

• Similar to functions in MS-Excel some object’s methods may
require an argument or arguments

• Examples
• ActiveDocument.CountNumberedItems
• ActiveDocument.Save

• ActiveDocument.SaveAs2("<name>")
Argument: New name of
document needed

No argument
required

The Application Object

• As mentioned this object is the VBA application running e.g.
MS-Word

• Program illustrating an example usage:
1applicationObject.docm
Sub ApplicationTest()

MsgBox (Application.Windows.Count)

End Sub

Application.Windows.Count

Object referred to:
‘Application’

Accessing the Windows property of Word (the
application)
• Info about the windows currently opened

Property of Window:
• Number

3/21/2018

Administrative and course introduction 6

The ActiveDocument Object

• Quick recap: although you may have many documents open,
the ‘active document’ is the document that you are currently
working with:

– Because it may be easy to confuse documents it’s best to only have a
single Word document open when writing a VBA program.

The active
document

Some Attributes Of The ActiveDocument Object

• Application: the application/program associated with the document (useful if a
VBA macro is linking several applications):details on next slide

• Content: the data (text) of the currently active document (needed if you want to
perform a text search ‘Find’ in a VBA program):details later in these notes

• Name: the (file) name of the current document (useful for determining the active
document if multiple documents are currently open): next slide

• Path: the save location of the active document e.g. C:\Temp\ :details on next slide

• FullName: the name and save location of the current document :details on next slide

• HasPassword: true/false that document is password protected: details on next slide

• Selection: the currently select text in the active document (may be empty) :details
later in these notes

• SpellingChecked: true/false document has been spell checked since document was
last edited: :next slide

• SpellingErrors.Count: the number of typographical errors

Note: Information for these attributes/properties can be viewed by passing the information
as a parameter to a message box
Format: MsgBox (ActiveDocument.<Attribute Name>)
Example: MsgBox (ActiveDocument.SpellingErrors.Count)

3/21/2018

Administrative and course introduction 7

Example Of Accessing Attributes/Properties

• Program illustrating an example usage:
2activeDocumentAttributes.docm

Sub activeDocumentAttributes()

MsgBox (ActiveDocument.Application)

MsgBox (ActiveDocument.Name)

MsgBox (ActiveDocument.Path)

MsgBox (ActiveDocument.FullName)

MsgBox ("Spell checked? " & _

ActiveDocument.SpellingChecked)

MsgBox ("Password protected? " & _

ActiveDocument.HasPassword)

MsgBox ("# typos=" & ActiveDocument.SpellingErrors.Count)

End Sub

Some Methods Of The ActiveDocument Object

• Checkspelling: exactly as it sounds: next slide

• Close: closes the active document (different options available)

• CountNumberedItems: number of bulleted and numbered elements:
next slide

• DeleteAllComments: removes comments from the current document:
next slide

• Printout: prints current active document on the default printer : next
slide

• Save: saves the current document under the same name: next slide

• SaveAs2: saves the current document under a different name: : next
slide

• Select: select some text in the active document

• SendMail(): sends an email using MS-Outlook, the currently active
document becomes a file attachment

3/21/2018

Administrative and course introduction 8

Example Of Using Methods

• Program illustrating an example usage:
3activeDocumentMethods.docm

Sub activeDocumentAttributes()

ActiveDocument.CheckSpelling

MsgBox (ActiveDocument.CountNumberedItems)

ActiveDocument.DeleteAllComments

ActiveDocument.PrintOut

ActiveDocument.Save

ActiveDocument.SaveAs2 ("Copy")

End Sub

ActiveDocument.SendMail()

• Runs the default email program

• The active document automatically becomes an attachment

• Subject line = name of document

• (For anything more ‘fancy’ you should use VBA to create and
access an MS-Outlook object)

3/21/2018

Administrative and course introduction 9

“Finding” Things In A Document

• It can be done in different ways:

• Example (common) ‘Find’ is an object that is part of the
‘Selection’ object in a document.
– JT’s note: although it may appear to be confusing at first it doesn’t mean

that the find (or find and replace) requires text to be selected.

– Making ‘Find’ a part of ‘Selection’ was merely a design decision on
the part of Microsoft.

• Example (alternative is JT’s preferred approach) ‘Find’ is an
object that is part of the ‘Content’ object of the
‘ActiveDocument’
– ActiveDocument.Content.Find

– More details coming up...
One source of information:
http://msdn.microsoft.com/en-us/library/office/aa211953(v=office.11).aspx

Find: Single Replacement

• Word document containing the macro:
4simpleFind.docm
sub simpleFind()

ActiveDocument.Content.Find.Execute
FindText:="tamj",ReplaceWith:="tam"

end Sub

‘Reminder: The instruction can be broken into two lines without

‘an error by using the “line continuation” as a connector

ActiveDocument.Content.Find.Execute
FindText:="tamj", _

ReplaceWith:="tam"

Background for example:
• My old email address (still works):

tamj@cpsc.ucalgary.ca
• My new email address:

tam@ucalgary.ca
• Incorrect variant:

tamj@ucalgary.ca

http://msdn.microsoft.com/en-us/library/office/aa211953(v=office.11).aspx
mailto:tamj@cpsc.ucalgary.ca
mailto:tam@ucalgary.ca

3/21/2018

Administrative and course introduction 10

More Complex Find And Replace

• Word document containing the macro:
findReplaceAllCaseSensitive.docm

Sub findReplaceAllCaseSensitive()

ActiveDocument.Content.Find.Execute FindText:="tamj", _

ReplaceWith:="tam", Replace:=wdReplaceAll, _

MatchCase:=True

End Sub

Before After

With, End With

• For ‘deep’ commands that require many levels of ‘dots’, the ‘With’, ‘End With’
can be a useful abbreviation.

• Example

With ActiveDocument.Content.Find

.Text = "tamj"

Equivalent to (if between the ‘with’ and the ‘end with’:

ActiveDocument.Content.Find.Text = "tamj"

• Previous example, the ‘Find’ employing ‘With’, ‘End With’:

• Also the search and replacement text are specified separately to shorten the ‘execute’
(the “ActiveDocument.Content.Find” listed once)

With ActiveDocument.Content.Find

.Text = "tamj"

.Replacement.Text = "tam"

.Execute MatchCase:=True, Replace:=wdReplaceAll

End With

‘Find text’ and
‘replacement text’
moved here to
simplify the

‘.execute’

ActiveDocument.Content.Find
.Execute

Anything between the ‘find’ and ‘with’
will be preceded in this example with
ActiveDocument.Content.Find:

3/21/2018

Administrative and course introduction 11

Find And Replace

• It’s not just limited to looking up text.

• Font effects e.g., bold, italic etc. can also be ‘found’ and
changed.

Finding And Replacing Bold Font

• Word document containing the macro: 5findBold.docm
'Removes all bold text

Sub findBold()

With ActiveDocument.Content.Find

.Font.Bold = True

With .Replacement

.Font.Bold = False

End With

.Execute Replace:=wdReplaceAll

End With

End Sub

3/21/2018

Administrative and course introduction 12

Finding/Replacing Formatting Styles

• You already have a set of pre-created formatting styles defined
in MS-Word.

• You can redefine the characteristic of a style if you wish.

• Assume for this example that you wish to retain all existing
styles and not change their characteristics.

• But you want to replace all instances of one style with another
style e.g., all text that is formatted as ‘normal’ is to become
formatted as ‘TamFont’

• ‘Find’ can be used to search (and replace) instances of a
formatting style.

Finding/Replacing Formatting Styles (2)

• Word document containing the macro:
6findReplaceStyle.docm
Sub findReplaceStyle()

With ActiveDocument.Content.Find

.Style = "Normal"

With .Replacement

.Style = "TamFont"

End With

.Execute Replace:=wdReplaceAll

End With

End Sub

BEFORE AFTER

‘Normal’
style
becomes
‘TamFont
’

3/21/2018

Administrative and course introduction 13

Counting The Number Of Occurrences Of A Word

• Example applications:
– Evaluating resumes by matching skills sought vs. skills listed by the

applicant.

– Ranking the relevance of a paper vs. a search topic by the number of
times that the topic is mentioned.

• Word frequency may be one criteria employed when websites rank search
results according to relevance

• Complete Word document containing the macro: 7counting
occurences.docm

Example: Counting Occurrences

Sub countingOccurences()
Dim count As Long
Dim searchWord As String
count = 0
searchWord = InputBox("Word to search for")

' Exact match (assignment)
With ActiveDocument.Content.Find

Do While .Execute(FindText:=searchWord, Forward:=True, _
MatchWholeWord:=True) = True
count = count + 1

Loop
End With
MsgBox ("Exact matches " & count)

End Sub

3/21/2018

Administrative and course introduction 14

Review: Lookup Tables (For Constants)

• Excel: Lookup tables are used to define values that do not
typically change but are referred to in multiple parts of a
spreadsheet.

Named Constants

• They are similar to variables: a memory location that’s been
given a name.

• Unlike variables their contents cannot change.

• The naming conventions for choosing variable names generally
apply to constants but constants should be all UPPER CASE.
(You can separate multiple words with an underscore).
–This isn’t a usual Visual Basic convention but since it’s very common with

most other languages, you will be required to follow it for this class.

• Example CONST PI = 3.14

–PI = Named constant, 3.14 = Unnamed constant

• They are capitalized so the reader of the program can quickly
distinguish them from variables.

3/21/2018

Administrative and course introduction 15

Declaring Named Constants

• Format:
Const <Name of constant> = <Expression>1

JT: it’s preceded by the keyword ‘const’ to indicate that it is a

constant/unchanging.

• Example:
Sub ConstantExample()

Dim area as Double

Dim radius as Double

Const PI = 3.14

radius = InputBox("Radius")

area = PI * (radius * radius)

End Sub

1 The expression can be any mathematical operation but can’t be the result of a function call

Why Use Named Constants

• They can make your programs easier to read and understand

• Example:
Income = 315 * 80

Vs.

Income = WORKING_DAYS_PER_YEAR * DAILY_PAY

No

Yes

3/21/2018

Administrative and course introduction 16

Predefined Constants: MS-Word Constants

• Microsoft uses their owning naming convention for predefined
named constants.

• Example:
– wdPromptToSaveChanges

• Usage:
– ActiveDocument.Close(wdPromptToSaveChanges)

Closing Documents

• Default action when closing a MS-Word document that has
been modified (prompt)

• VBA code to close a document in this fashion:
ActiveDocument.Close (wdPromptToSaveChanges)

Pre-defined constant

3/21/2018

Administrative and course introduction 17

More Pre-Defined Constants: Closing Documents

• ActiveDocument.Close method

• Word document containing the macro:
“8closingActions.docm”

Sub ClosingActions()

ActiveDocument.Close (<Constant for closing action>)

End Sub

'Choose one constant
wdPromptToSaveChanges
wdDoNotSaveChanges
wdSaveChanges

Formatting A Document

• Entire document:
– You first need to specify the document or part of a document to be

formatted

– One way is through the ‘ActiveDocument’ object

– Then choose the ‘Select’ method of that document.

• Review: it’s a method and not a property because it applies an action: select =
selecting the text of the entire document

• Selected text:
– Only format the currently selected text via the ‘Selection’ object).

3/21/2018

Administrative and course introduction 18

Formatting Text (Entire Active Document): An
Example

• Suppose you want to format a document in the following way

• Entire document
– Font = Calibri

Formatting: Entire Document

• As mentioned the entire document can be selected.

• Now for the ‘selected text’ (in this case it’s the whole
document) access the ‘Font’ property and the ‘Name’
property of that font and give it the desired name.

• Word document containing the macro:
9formattingEntireDocument.docm
Sub formattingEntireDocument()

ActiveDocument.Select

Selection.Font.Name = "Calibri"

End Sub

ActiveDocument.Select

Selection.Font.Name = "Calibri"

3/21/2018

Administrative and course introduction 19

The Selection Object

• This is the currently selected text in a document.
– It may be empty (nothing selected)

Some Attributes/Properties Of The Selection
Object

• Font.Name: specify the type (name) of font

• Font.Size: specify how big is the font

• Font.ColorIndex: specify the color of the font

• Font.UnderLine: specify the type of underlining to be
applied (or to remove underlining)

• Font.Bold: allows bolding to change (toggle or set)

Similar to how the Attributes/Properties of ActiveDocument
Object affect only the currently active document these
Attributes/Properties only take effect on the currently selected
text (if there’s any).

3/21/2018

Administrative and course introduction 20

Using The Selection Object Attributes/Properties

• Name of the Word document containing the program:
10selectionAttributes.docm

Sub selectionObjectAttributes()

Selection.Font.Name = "Wingdings" 'Must be in quotes

Selection.Font.Size = 36

Selection.Font.ColorIndex = wdBlue

' Selection.Font.Underline = <Constant for underlining>

' wdUnderlineNone, wdUnderlineSingle

' e.g. Selection.Font = wdUnderlineSingle

' Bolding options

Selection.Font.Bold = wdToggle ' On/off

Selection.Font.Bold = True ' Turn on (false = off)

End Sub

Seeing Color (And Under Line Options)

• Use the ‘auto complete’ feature of VBA to view the options

3/21/2018

Administrative and course introduction 21

Some Methods Of The Selection Object

• ClearFormatting: removes all formatting effects (e.g. bold, italics)

• TypeText: insert the specified text in the VBA program

• Delete: deletes any selected text

• EndKey: move the cursor to the end of the document (covered later in a
large example)

• HomeKey: move the cursor to the start of the document (covered later in
a large example)

• InsertFile: replace selection with text from the specified file

• (covered in a later example)

Similar to how the method of ActiveDocument Object only affect the
currently active document these Attributes/Properties may only take effect
on the currently selected text (if there’s any).

• Affects selected text: ClearFormatting, Delete

• Does not require text to be selected: TypeText, EndKwy, HomeKey,
InsertFile

Using Simple Methods Of The Selection Object

• Name of the Word document containing the program:
11selectionMethod.docm

• Try running it with and without some text selected

Sub selectionObjectMethod()

Selection.ClearFormatting

Selection.TypeText ("My new replacement text")

End Sub

3/21/2018

Administrative and course introduction 22

Writing Text To Start/End

• Name of the Word document containing the program:
12selectionHomeEndKey.docm
– HomeKey docs: https://msdn.microsoft.com/en-us/library/office/ff192384.aspx

– EndKey docs: https://msdn.microsoft.com/en-us/library/office/ff195593.aspx

Sub selectionHomeEndKey()

Const SONG_TITLE = "You're not here"

Const SONG_LYRICIST = "Akira Yamaoka"

Selection.HomeKey Unit:=wdStory

Selection.TypeText (SONG_TITLE)

Selection.EndKey Unit:=wdStory

Selection.TypeText (SONG_LYRICIST)

End Sub

The Previous VBA Program: Application Of ‘Proximity’
(Spreadsheet section: C.R.A.P.)

• Related parts of

the program are

grouped

together

• Each part is

separated with

whitespace

3/21/2018

Administrative and course introduction 23

Inserting Text

• Example files (must all be in the same folder)

Text input1

13input1.docx

Text input2

13input2.rtf

Text input3

13input3.txt

Word docm
document (VBA
program)

Automatically Inserting Text Into A Word Document

• Name of the Word document containing the program:
13selectionInsertingText.docm

Sub insertingText()

Selection.InsertFile ("13input1.docx")

Selection.InsertFile ("13input2.docx")

Selection.InsertFile ("13input3.docx")

End Sub

3/21/2018

Administrative and course introduction 24

The Selection Object again

• With a approaches if no text was selected then the program
would produce no visible effect.
Sub SelectedFontChange()

Selection.Font.Bold = wdToggle

End

• The program could automatically select text for you
“expanding” the selection.

Sub AutoSelectedFontChange()

Selection.Expand

Selection.Font.Bold = wdToggle

End Sub

Before After

Constants For The Selection Object

Name of constant Meaning of constant

wdSelectionIP No text selected

wdSelectionNormal Text (e.g., word, sentence) has

been selected

wdSelectionShape A graphical shape (e.g., circle,

text book) has been selected

Application of these constants coming up on the next
slide

3/21/2018

Administrative and course introduction 25

The Selection Object And A Practical Application
Of Branching

• An example application of branching: check if a selection has
been made and only apply the selection if that is the case.
– Checking if a condition is true

• Word document containing the macro:
“14selectionExample.docm”
Sub checkSelection()

If Selection.Type = wdSelectionIP Then

MsgBox ("No text selected, nothing to change")

Else

Selection.Font.Bold = wdToggle 'wdToggle, constant

End If

End Sub

Applications Of Branching

• Checking state
IF(program is in some state) then

Program reacts

End

• Example 1:
If (Application.CapsLock = True) Then

MsgBox ("Caution: Caps Lock is On!“)

End If

• Example 2:
age = InputBox("Age: ")

If (age < 0) Then

MsgBox ("Age cannot be negative")

End If

3/21/2018

Administrative and course introduction 26

Applications Of Branching

• Recall this example from earlier (tutorial)
Selection.Font.Bold = wdToggle

• If no text is selected nothing happens but the user is not
informed.

• Modification of the program using IF-branches:
– Checking if text has been selected and if not displaying an error popup

message.

• Example 3:
If (Selection.Type = wdSelectionIP) Then

MsgBox ("No text selected, nothing to change")

Else

Selection.Font.Bold = wdToggle 'wdToggle, constant

End If Constants for the Selection object
wdSelectionIP No text selected
wdSelectionNormal Text selected

Application Branching: Marking Program (If There Is
Time)

• Word document containing the macro: “15Marking
program.docm”

• Synopsis:
– The program spells checks the document

• Assume each document includes the name of the person in the file name

– If the number of errors meets a cut-off value then it’s a ‘fail’

– Otherwise it’s a pass

– The feedback is ‘written’ to the beginning of the document using a
specific font and several font effects in order to stand out

• The message is customized with the person’s name at the beginning of the
feedback

3/21/2018

Administrative and course introduction 27

Marking Program

Sub MarkingForSpelling()
Dim totalTypos As Integer
Const MAX_TYPOS = 1
Dim currentDocument As String
Dim feedback As String

'Get Name of current document
currentDocument = ActiveDocument.Name

'Tally the number of typos
totalTypos = ActiveDocument.SpellingErrors.Count

'Feedback is prefaced by student(document) name
feedback = currentDocument & " marking feedback..."

Marking Program (2)

' HomeKey move to the home position (start of document)
Selection.HomeKey Unit:=wdStory

'Recall: before this feedback just = document name and
'an indication that feedback is coming
If (totalTypos > MAX_TYPOS) Then

feedback = feedback & ": Too many typographical errors:
Fail"

Else
feedback = feedback & ": Pass"

End If

' Chr(11) adds a newline (enter) to the end of feedback
feedback = feedback & Chr(11) & Chr(11)

' Alternative use the constant vbCr (VB cursor return)

3/21/2018

Administrative and course introduction 28

Marking Program (3)

' Font effects to make the feedback stand out
Selection.Font.ColorIndex = wdRed
Selection.Font.Size = 16
Selection.Font.Name = "Times New Roman"

' Write feedback into the document
Selection.TypeText (feedback)

End Sub

Collection

• An object that consists of other objects
– Real World example: a book consists of pages, a library consists of books

• Example: The Documents collection will allow access to the
documents that have been opened.

• Access to a collection rather than the individual objects may be
time-saving shortcut.
– Instead of manually closing all open documents this can be done in one

instruction:

Documents.close

3/21/2018

Administrative and course introduction 29

Types Of Collections

• Some Attributes/Properties of a document that return a
collection.

• Documents: currently open documents

• Shapes: MS-Word shapes in a document (rectangles, circles etc.)

• InlineShapes: images (pictures inserted) into a Word document

• Tables: tables in a document

• E.g., ActiveDocument.Tables –accesses all the tables in your document

• ActiveDocument.Tables(1) –access to the first table in a document.

• Windows: briefly introduced at the start of this section of notes

Documents Collection For Printing: Multiple
Documents

• Printing all the documents currently open in MS-Word.
– Take care that you don’t run this macro if you have many documents

open and/or they are very large!

– Word document containing the macro example:
“16printMultipleDocumentst.docm”

Sub PrintDocumentsCollection()

Dim numDocuments As Integer

Dim count As Integer

numDocuments = Documents.count

count = 1

Do While (count <= numDocuments)

Documents.Item(count).PrintOut

count = count + 1

Loop

End Sub

Learning: another
practical application
of looping e.g.,
automatically open
multiple documents,
make changes, print
and save them
without user action
needed

3/21/2018

Administrative and course introduction 30

Accessing Shapes And Images (If There Is Time)

• (VBA specific)
– Shapes (basic shapes that are drawn by Word)

– InlineShapes (images that are created externally and inserted into
Word)

• Both collections accessed via the ActiveDocument object:
– ActiveDocument.Shapes: access to all the shapes in the currently

active Word document

• ActiveDocument.Shapes(<index>): access to shape #i in the document

– ActiveDocument.InlineShapes: access to all the images in the
currently active Word document

• ActiveDocument.InlineShapes(<index>): access to image #i in the
document

Example: Accessing Shapes And Images

Word document containing the complete macro:
“17accessingImagesFigures.docm”

Dim numImages As Integer
Dim numShapes As Integer

numImages = ActiveDocument.InlineShapes.Count
numShapes = ActiveDocument.Shapes.Count

MsgBox ("Images=" & numImages)
MsgBox ("Simple shapes=" & numShapes)

3/21/2018

Administrative and course introduction 31

Example: Accessing Shapes And Images (2)

' Checks expected # images and alters first & third
If (numImages = 4) Then

ActiveDocument.InlineShapes(1).Height = _
ActiveDocument.InlineShapes(1).Height * 2

ActiveDocument.InlineShapes(3).Height = _
ActiveDocument.InlineShapes(3).Height * 2

End If

' Checks expected # shapes, alters 2nd & 6th

' Deletes the first shape
If (numShapes = 6) Then

ActiveDocument.Shapes(2).Width = _
ActiveDocument.Shapes(2).Width * 4

ActiveDocument.Shapes(6).Fill.ForeColor = vbRed
ActiveDocument.Shapes(1).Delete

End If

Nesting

• Nesting refers to an item that is “inside of” (or “nested in”)
some other item.

• Recall from ‘spreadsheets’ nesting refers to an ‘IF-function’
that is inside of another ‘IF-function’
– Example (assume that the respondent previously indicated that his or her

birthplace was an Alberta city)
– Select the AB city in which you were born

1. Airdrie

2. Calgary

3. Edmonton

…

• Selecting Airdrie excludes the possibility of selecting Calgary

• Cities listed later are ‘nested’ in earlier selections)

• Nesting in programming (VBA) refers to IF-branches and Do-
While loops that are inside of each other

3/21/2018

Administrative and course introduction 32

Nesting

• Nesting: one structure is contained within another
– Nested branches:
If (Boolean) then

If (Boolean) then

...

End If

End if

• Branches and loops can be nested within each other
Do while (Boolean) If (Boolean) then

If (Boolean) then Do while (Boolean)

... ...

End if Loop

Loop

Do while (Boolean)

Do while (Boolean)

...

Loop

Loop

Recognizing When Nesting Is Needed

• Scenario 1: A second question is
asked if a first question answers
true:
– Example: If it’s true the applicant is a

Canadian citizen, then ask for the
person’s income (checking if eligible for
social assistance).

– Type of nesting: an IF-branch nested
inside of another IF-branch

If (Boolean) then

If (Boolean) then

...

End If

End if

Q:
Citizen?

Q: Low
income?

T

T

Can receive
assistance

F

No
assistance

F

Nested
branch/IF

3/21/2018

Administrative and course introduction 33

Example #1: Nested IFs

• Word document containing the example:
18nestingIFinsideIF.docm
Sub nestedCase1()

Dim country As String

Dim income As Long

Const INCOME_CUTOFF = 24000

country = InputBox("What is your country of citizenship?")

If (country = "Canada") Then

income = InputBox("What is your income $")

If (income <= INCOME_CUTOFF) Then

MsgBox ("Citizenship: " & country & "; " & _

"Income $" & income & _

": eligible for assistance")

End If

End If

End Sub

Recognizing When Nesting Is Needed

• Scenario 2A: As long some condition is
met a question will be asked. As the
question is asked if the answer is invalid
then an error message will be displayed.
– Example: While the user entered an invalid

value for age (too high or too low) then if the
age is too low an error message will be
displayed.

– Type of nesting: an IF-branch nested inside
of a Do-While loop

Do While (Boolean)

If (Boolean) then

...

End If

Loop

Q: As long
invalid
value?

Q:
Invalid?

T

T

Display error

Prompt for value

F

F

Done

3/21/2018

Administrative and course introduction 34

Example 2A: IF Nested Inside A Do-While

• Word document containing the example:
19nestingIFinsideWHILE.docm
Sub nestedCase2A()

Dim age As Long

Const MIN_AGE = 1

Const MAX_AGE = 118

age = InputBox("How old are you (1-118)?")

Do While ((age < MIN_AGE) Or (age > MAX_AGE))

If (age < MIN_AGE) Then

MsgBox ("Age cannot be lower than " & _

MIN_AGE & " years")

End If

age = InputBox("How old are you (1-118)?")

Loop

MsgBox ("Age=" & age & " is age-okay")

End Sub

Recognizing When Nesting Is Needed

• Scenario 2B: If a question answers true
then check if a process should be
repeated.
– Example: If the user specified the country of

residence as Canada then repeatedly prompt
for the province of residence as long as the
province is not valid.

– Type of nesting: a Do-While loop nested
inside of an IF-branch

If (Boolean) then

Do While (Boolean)

...

Loop

End If

Q:Canada?

F

Done

F

T

Prompt for
province

T
Prompt for

province

Q: Province
Invalid?

3/21/2018

Administrative and course introduction 35

Example 2B: Do-While Nested Inside An IF

• Word document containing the example:
20nestingWHILEinsideIF.docm

Dim country As String

Dim province As String

country = InputBox("What is your country of citizenship?")

If (country = "Canada") Then

province = InputBox("What is your province of " & _

"citizenship?")

Do While ((province <> "AB") And (province <> "BC"))

MsgBox ("Valid provinces: AB, BC")

province = InputBox("What is your province of" & _

" citizenship?")

Loop

End If

MsgBox ("Country: " & country & ", " & "Province: " & _

" province)

Recognizing When Nesting Is Needed

• Scenario 3: While one process is repeated,
repeat another process.
– More specifically: for each step in the first

process repeat the second process from start to
end

– Example: While the user indicates that he/she
wants to calculate another tax return prompt the
user for income, while the income is invalid
repeatedly prompt for income.

– Type of nesting: a Do-While loop nested inside
of an another Do-While loop

Do While (Boolean)

Do While (Boolean)

...

Loop

Loop

Q:Another
tax return?

F

Done

T

Prompt for
Income

T
Prompt for

Income

Q: Income
Invalid?

F

3/21/2018

Administrative and course introduction 36

Example #3: Do-While Nested Inside Another Do-
While

• Word document containing the example:
21nestingWHILEinsideWHILE.docm

Dim runAgain As String

Dim income As Long

Const MIN_INCOME = 0

runAgain = "yes"

Do While (runAgain = "yes")

MsgBox ("CALCULATING A TAX RETURN")

income = -1

Do While (income < MIN_INCOME)

income = InputBox("Income $")

Loop

runAgain = InputBox("To calculate another return" & _

" enter yes")

Loop

a

Application Of Alignment (C.R.A.P.): Nesting

• Allows program structure (nesting levels) to be easily
determined:
– What statements execute as which body

3/21/2018

Administrative and course introduction 37

Example: Nesting

1. Write a program that will count out all the numbers from one
to six.

2. For each of the numbers in this sequence the program will
determine if the current count (1 – 6) is odd or even.

a) The program display the value of the current count as well an indication
whether it is odd or even.

• Which Step (#1 or #2) should be completed first?

Step #1 Completed: Now What?

• For each number in the sequence determine if it is odd or
even.

• This can be done with the modulo (remainder) operator: MOD
– An even number modulo 2 equals zero (2, 4, 6 etc. even divide into 2 and

yield a remainder or modulo of zero).

– If (counter MOD 2 = 0) then 'Even

– An odd number modulo 2 does not equal zero (1, 3, 5, etc.)

• Pseudo code visualization of the problem
Loop to count from 1 to 6

Determine if number is odd/even and display message

End Loop

– Determining whether a number is odd/even is a part of counting through
the sequence from 1 – 6, checking odd/even is nested within the loop

3/21/2018

Administrative and course introduction 38

Accessing Tables (If There Is Time)

• The tables in the currently active Word document can be made
through the ActiveDocument object:
– ActiveDocument.Tables: accesses the ‘tables’ collection (all the

tables in the document).

– ActiveDocument.Tables(<integer ‘i’>): accesses table # i in
the document

– ActiveDocument.Tables(1).Sort: sorts the first table in the
document (default is ascending order)

Simple Example: Sorting Three Tables

• Instructions needed for sorting 3 tables
ActiveDocument.Tables(1).Sort

ActiveDocument.Tables(2).Sort

ActiveDocument.Tables(3).Sort

Before After

3/21/2018

Administrative and course introduction 39

Previous Example

• Critique of the previous approach: the program ‘worked’ for
the one document with3 tables but:
– What if there were more tables (cut and paste of the sort instruction is

wasteful)?

– What if the number of tables can change (i.e., user edits the document)

• Notice: The process of sorting just repeats the same action but
on a different table.
ActiveDocument.Tables(1).Sort

ActiveDocument.Tables(2).Sort

ActiveDocument.Tables(3).Sort

• Looping/repetition can be applied reduce the duplicated
statements

Revised Example: Sorting Tables With A Loop

Word document containing the complete macro:
“22sortingTables.docm”

Dim CurrentTable As Integer

Dim NumTables As Integer

NumTables = ActiveDocument.Tables.Count

If NumTables = 0 Then

MsgBox ("No tables to sort")

Else

CurrentTable = 1

Do While (CurrentTable <= NumTables)

MsgBox ("Sorting Table # " & CurrentTable)

ActiveDocument.Tables(CurrentTable).Sort

CurrentTable = CurrentTable + 1

Loop

End If

3/21/2018

Administrative and course introduction 40

Result: Sorting Tables

• Before

• After

More On Sort

• A handy parameter that can be used to configure how it runs.

• Format
Sort (<Boolean to Exclude header – True or False>)

• Example
– ActiveDocument.Tables(CurrentTable).Sort(True)

– Before

– After

3/21/2018

Administrative and course introduction 41

Second Sorting Example: Exclude Headers

• Document containing the macro:
“23sortingTablesExcludeHeader.docm”

Dim CurrentTable As Integer

Dim NumTables As Integer

NumTables = ActiveDocument.Tables.Count

If NumTables = 0 Then

' Don't bother sorting

MsgBox ("No tables to sort")

Else

CurrentTable = 1

Do While (CurrentTable <= NumTables)

MsgBox ("Sorting Table # " & CurrentTable)

ActiveDocument.Tables(CurrentTable).Sort (True)

CurrentTable = CurrentTable + 1

Loop

End If

Before

After

The DIR Function

• It can be used to go through all the documents in a folder (this
will be illustrated gradually in advanced examples but the first
one will be rudimentary and only access single documents)

• It can access sub-folders and sub-sub folders of a folder (very
advanced use: well beyond the scope of the this course)

• Basic use: this function takes as inpu a location (e.g., C:\temp\)
and a filename as an argument and it determines if the file
exists at the specified location.
– If the file is found at this location then the function returns the name of

the file.

– If the file is not found at this location then the function returns an empty
string (zero length)

– Getting the file name can then allow that document to be opened

3/21/2018

Administrative and course introduction 42

Simple Use Of The DIR Function

• Word document containing the macro example:
24DIRFunctionSimple.docm

Dim location As String

Dim filename As String

Dim result As String

location = "C:\temp\203\dirExample1\"

result = Dir(location)

MsgBox (result)

filename = "Doc1.docx"

result = Dir(location & filename)

MsgBox (result)

result = Dir(location & "*.xls*")

MsgBox (result)

a.xlsx
b.Xls
Doc1.docx

Contents of folder
“dirExample1”

Output of the message boxes:
• a.xlsx
• Doc1.docx
• a.xlsx

Example: Using Dir To Check If File Exists (2)

• Word document containing the macro example:
25DIRFunctionIntermediate.docm

Sub openExistingDocument()

Dim filename As String

Dim checkIfExists As String

Dim last As Integer

filename = InputBox ("Enter the path and name of file to

open e.g., 'C:\temp\tam.docx'")

' Error case: nothing to open, user entered no info

If (filename = "") Then

MsgBox ("You entered a blank file name")

3/21/2018

Administrative and course introduction 43

Example: Using Dir To Check If File Exists (3)

' No error: non-empty info entered

Else

checkIfExists = Dir(filename)

If (Len(checkIfExists) = 0) Then

MsgBox ("File does not exist the specified

location" & filename)

Else

MsgBox ("File exists opening")

Documents.Open (filename)

End If

End If

End Sub

Practical Use Of Dir: Access Each File In A Directory

• Word document containing the macro example: 26loopFolder.docm
Dim directoryPath As String
Dim currentFile As String
directoryPath = "C:\temp\203\dirExample2\"
currentFile = Dir(directoryPath)
If (currentFile = "") Then

MsgBox ("No files in directory: " & directoryPath)
End If
Do While (currentFile <> "")

MsgBox (currentFile) ' Display file name in popup
currentFile = Dir ' Move onto next document in folder

Loop

3/21/2018

Administrative and course introduction 44

Alternate Version: Access Only Word Documents

• Word document containing the macro example: 27loopWordFolder.docm

Sub openAllWordDocumentsInFolder()
Dim directoryPath As String
Dim currentFile As String

directoryPath = "C:\temp\203\dirExample3\"
currentFile = Dir(directoryPath & "*.doc*")

If (currentFile = "") Then
MsgBox ("No Word documents in location " &

directoryPath)
End If
Do While (currentFile <> "")

MsgBox ("Opening " & currentFile)
Documents.Open (directoryPath & currentFile)
currentFile = Dir

Loop
End Sub

Applying Many Of The Previous Concepts In A Practical
Example & Linking Documents And (If There’s Time)

• As you are aware different programs serve different purposes:
– Database: storing and retrieving information

– Spreadsheet: performing calculations, displaying graphical views of
results

– Word processor: creating text documents with many features for
formatting and laying out text

• VBA allows the output of one program to become the input of
another program.
– Although this can be done ‘manually’ (reading the documents and typing

in changes) if the dataset is large this can be a tedious and error-prone
process

– VBA can be used to automate the process

3/21/2018

Administrative and course introduction 45

Processing All Documents In A Folder: Overview

• Overview of the process (may be very helpful for the
assignment)

While (There are unprocessed documents in folder)

Open next unprocessed document

‘ (This opened document becomes the active document)

Process the active document

Move onto the next document

Processing All Documents In A
Folder: VBA Program

• Word document containing the macro:
“28processAllFolderWordDocuments.docm”

Sub processFolderDocuments()

Const FOLDER_PATH As String = "C:\temp\203\dirExample3"

Dim currentFile As String

Dim wordCount As Long

currentFile = Dir(FOLDER_PATH & "*.doc*")

Do While (currentFile <> "")

Documents.Open (FOLDER_PATH & currentFile)

wordCount = ActiveDocument.Words.count

MsgBox (currentFile & "# words in doc " & wordCount)

currentFile = Dir

Loop

End Sub

JT’s note: this is one of the
more complete examples to
use as a guide for your
solution to the final feature
of A3

3/21/2018

Administrative and course introduction 46

Revised Marking Program (If There Is Time)

• Word document containing the macro:
“29markAllFolderDocuments.docm”

Sub markAllFolderDocuments()

Const MAX_TYPOS = 1

Const LARGER_FONT = 14

Dim directoryPath As String

Dim currentFile As String

Dim totalTypos As Integer

Dim feedback As String

Revised Marking Program (2)

directoryPath = InputBox("Location and name of folder
containing assignments (e.g., C:\grades\")

currentFile = Dir(directoryPath & "*.doc*")

If (directoryPath = "") Then
MsgBox ("No Word documents in specified folder,

looking in default location C:\Temp\")
directoryPath = "C:\Temp\"

End If

3/21/2018

Administrative and course introduction 47

Revised Marking Program (3)

Do While (currentFile <> "")
Documents.Open (directoryPath & currentFile)
currentDocument = ActiveDocument.Name
totalTypos = ActiveDocument.SpellingErrors.Count
feedback = currentDocument & " marking feedback..."
Selection.HomeKey Unit:=wdStory
If (totalTypos > MAX_TYPOS) Then

feedback = feedback & ": Too many typographical
errors: Fail"

Else
feedback = feedback & ": Pass"

End If
feedback = feedback & vbCr
Selection.Text = feedback
' Loop body continued on next page

e.g. Feedback for
“Typos.docx” = “Typos
marking feedback…”

e.g. Feedback for
“Typos.docx” =
“typos.doc marking
feedback...: Too many
typographical errors:
Fail”

Revised Marking Program (4)

' Loop body continued from previous page
With Selection.Font

.Bold = True

.Size = LARGER_FONT

.ColorIndex = wdRed
End With
ActiveDocument.Close (wdSaveChanges)
currentFile = Dir

Loop
End Sub

3/21/2018

Administrative and course introduction 48

Example Problem

• Financial statements (monetary data) about many companies
can be stored in a spreadsheet where an analysis can be
performed e.g. does the company have enough $$$ on hand to
meet its financial commitments.

• This information can be read into a VBA program which can
further evaluate the data.

• The results can be presented in Word using the numerous text
formatting features to highlight pertinent financial
information.

• Names of the documents used in this example:
– FNCE.xlsx (contains the financial data: program input)

– 30spreadSheetAnalyzer.docm (contains the VBA program as well as
the presentation of results: program output)

Spread Sheet Analyzer

Sub spreadsheetAnalyzer()
Const MIN_INCOME = 250
Const MIN_RATIO = 25

Const PERCENT = 100
Dim company1 As String
Dim income1 As Long
Dim ratio1 As Long
Dim company2 As String
Dim income2 As Long
Dim ratio2 As Long
Dim company3 As String
Dim income3 As Long
Dim ratio3 As Long
Dim comment1 As String
Dim comment2 As String
Dim comment3 As String

TAMCO: 33%

HAL: Net income $250

PEAR COMPUTER: Net income $9000, 901% <== BUY THIS!

3/21/2018

Administrative and course introduction 49

Spread Sheet Analyzer (2)

Dim excel As Object

Set excel = CreateObject("excel.application")

excel.Visible = True

Dim workbook

Dim location As String

location = InputBox("Path and name of spreadsheet e.g.

C:\Temp\FNCE.xlsx")

Set workbook = excel.workbooks.Open(location)

Object =
Type for any MS-Office variable
https://msdn.microsoft.com/

Spread Sheet Analyzer (2)

Dim excel As Object

Set excel = CreateObject("excel.application")

excel.Visible = True

Dim workbook

Dim location As String

location = InputBox("Path and name of spreadsheet e.g.

C:\Temp\FNCE.xlsx")

Set workbook = excel.workbooks.Open(location)

Object =
Type for any MS-Office variable
https://msdn.microsoft.com/

3/21/2018

Administrative and course introduction 50

Spread Sheet Analyzer (3)

' Get company names

company1 = excel.Range("A1").Value

company2 = excel.Range("A5").Value

company3 = excel.Range("A9").Value

' Get net income and ratio

income1 = excel.Range("C3").Value

ratio1 = excel.Range("D3").Value * PERCENT

income2 = excel.Range("C7").Value

ratio2 = excel.Range("D7").Value * PERCENT

income3 = excel.Range("C11").Value

ratio3 = excel.Range("D11").Value * PERCENT

' Move the selection to the top of the Word document

Selection.HomeKey Unit:=wdStory

Spread Sheet Analyzer (4): First Company

comment1 = company1 & ": "
If (income1 >= MIN_INCOME) Then

comment1 = comment1 & "Net income $" & income1
Selection.Font.Color = wdColorRed
Selection.TypeText (comment1)
If (ratio1 >= MIN_RATIO) Then

comment1 = ", " & ratio1 & "% <== BUY THIS!"
Selection.Font.Color = wdColorBlue
Selection.TypeText (comment1)

End If
Selection.TypeText (vbCr)

Else
If (ratio1 >= MIN_RATIO) Then

comment1 = comment1 & ratio1 & "%" & vbCr
Selection.Font.Color = wdColorBlue
Selection.TypeText (comment1)

End If
End If

TAMCO: 33%

3/21/2018

Administrative and course introduction 51

Spread Sheet Analyzer (5): Second Company

comment2 = company2 & ": "
If (income2 >= MIN_INCOME) Then

comment2 = comment2 & "Net income $" & income2
Selection.Font.Color = wdColorRed
Selection.TypeText (comment2)
If (ratio2 >= MIN_RATIO) Then

comment2 = ", " & ratio2 & "% <== BUY THIS!"
Selection.Font.Color = wdColorBlue
Selection.TypeText (comment2)

End If
Selection.TypeText (vbCr)

Else
If (ratio2 >= MIN_RATIO) Then

comment2 = comment2 & ratio2 & "%" & vbCr
Selection.Font.Color = wdColorBlue
Selection.TypeText (comment2)

End If
End If

HAL: Net income $250

Spread Sheet Analyzer (6): Third Company

comment3 = company3 & ": "
If (income3 >= MIN_INCOME) Then

comment3 = comment3 & "Net income $" & income3
Selection.Font.Color = wdColorRed
Selection.TypeText (comment3)
If (ratio3 >= MIN_RATIO) Then

comment3 = ", " & ratio3 & "% <== BUY THIS!"
Selection.Font.Color = wdColorBlue
Selection.TypeText (comment3)

End If
Selection.TypeText (vbCr)

Else
If (ratio3 >= MIN_RATIO) Then

comment3 = comment3 & ratio3 & "%" & vbCr
Selection.Font.Color = wdColorBlue
Selection.TypeText (comment3)

End If
End If

PEAR COMPUTER: Net income $9000, 901% <== BUY THIS!

3/21/2018

Administrative and course introduction 52

After This Section You Should Now Know

• Objects
– Properties/attributes vs. methods

• Using common properties/attributes and methods of the
following objects
– Application

– ActiveDocument

– Selection

• What is a named constant, why use them (benefits)

• What is a predefined named constant and what are some
useful, commonly used predefined constants

• Naming conventions for constants

After This Section You Should Now Know (2)

• Collections
– What are they

– What is the advantage in using them

– Common examples found in Word documents

• Using common collections in VBA
– Documents

– Shapes

– InLineShapes

– Tables

– Windows

3/21/2018

Administrative and course introduction 53

After This Section You Should Now Know (3)

• Nesting:
– IF within an IF

– Do-While within an IF, IF within a Do-While

– A Do-While within a Do-While

– Writing and tracing/nested structures

– When to apply nesting

After This Section You Should Now Know (4)

• How to use the ‘Dir’ function to access a folder
– Using this function to step through all the documents or specific types of

documents in a folder

– Also includes using the ‘Len’ function to check the length of filename
and location path (String)

• Accessing other types of MS-Office programs with an VBA
program written for Word

3/21/2018

Administrative and course introduction 54

Copyright Notice

• Unless otherwise specified, all images were produced by the
author (James Tam).

