
Branching and making decisions 1

James Tam

Making Decisions In Python

In this section of notes you will learn how to have
your programs choose between alternative courses
of action.

James Tam

Recap: Programs You’ve Seen So Far Produces
Sequential Execution

print ("This program will calculate the area of a
rectangle")

length = int(input("Enter the length: "))
width = int(input("Enter the width: "))
area = length * width
print("Area: ", area)

Start

End

Branching and making decisions 2

James Tam

Programming: Decision Making Is Branching

•Decision making is choosing among alternates (branches).

•Why is it needed?
- When alternative courses of action are possible and each action may

produce a different result.

•In terms of a computer program the choices are stated in the
form of a question that only yield an answer that is either true
or false
- Although the approach is very simple, modeling decisions in this fashion is

a very useful and powerful tool.

James Tam

High Level View Of Decision Making For The
Computer

Is income

below

$10,000?

True

•Nominal

income

deduction

•Eligible for

social

assistance

False Is income

between $10K

- $20K?

True

Income tax =

20%

False

etc.

Branching and making decisions 3

James Tam

How To Determine If Branching Can Be Applied

•Under certain circumstances or conditions events will occur
(the program reacts in a certain way if certain conditions have
been met).
- The branch determines if the event occurred and reacts accordingly.

•Examples:
- If users who don’t meet the age requirement of the website he/she will

not be allowed to sign up (conversely if users do meet the age
requirement he/she will be allowed to sign up).

- If an employee is deemed as too inexperienced and too expensive to
keep on staff then he/she will be laid off.

- If a person clicks on a link on a website for a particular location then a
video will play showing tourist ‘hot spots’ for that location.

- If a user enters invalid age information (say negative values or values
greater than 114) then the program will display an error message.

slide 5

James Tam

Decision-Making In Programming (Python)

•Decisions are questions with answers that are either true or
false (Boolean expressions) e.g., Is it true that the variable
‘num’ is positive?

•The program may branch one way or another depending upon
the answer to the question (the result of the Boolean
expression).

•Decision making/branching constructs (mechanisms) in Python:
- If (reacts differently only for true case)

- If-else (reacts differently for the true or false cases)

- If-elif-else (multiple cases possible but only one case can apply, if one
case is true then it’s false that the other cases apply)

Branching and making decisions 4

James Tam

New Terminology

•Boolean expression: An expression that must work out
(evaluate to) to either a true or false value.
- e.g., it is over 45 Celsius today

- e.g., the user correctly entered the password

•New term, body: A block of program instructions that will
execute under a specified condition (for branches the body
executes when the Boolean expression evaluates to/works out
to true)

- Style requirement
•The ‘body’ is indented (4 spaces)

name=input("Name: ")
print(name)

This/these instruction/instructions run when

you give the Python interpreter the name of a

file, the ‘body’ of the Python program runs

James Tam

Note On Indenting

•Indenting can make it easy to see structure (good style)

Notes ‘Introduction to computers’ CPSC
203, 217, 231

Branching and making decisions 5

James Tam

Note On Indenting (2)

•In Python indenting is mandatory in order to determine which
statements are part of a body (syntactically required in
Python).

Single statement body
if (num == 1):

print("Body of the if")
print("After body")

Multi-statement body (program ‘if2.py’)
taxCredit = 0
taxRate = 0.2
income = float(input("What is your annual income: "))
if (income < 10000):

print("Eligible for social assistance")
taxCredit = 100

tax = (income * taxRate) – taxCredit
print("Tax owed $%.2f" %(tax))

James Tam

Note On Indenting (3)

•A “sub-body” (IF-branch) is indented by an additional 4 spaces
(8 or more spaces) if one IF-branch is inside the body of
another IF-branch (this is called ‘nesting’ – more details later).

•It’s NOT recommended that you use tabs for indenting if you
write programs on different platforms (e.g. using a UNIX editor
in the lab and Notepad at home).

Branching and making decisions 6

James Tam

Decision Making With An ‘If’

Question? Execute a statement

or statements (body)

True

False

Remainder of

the program

James Tam

The ‘If’ Construct

•Decision making: checking if a condition is true (in which case
something should be done).

•Format:

(General format)

if (Boolean expression):

body

(Detailed structure)

if (<operand> <relational operator> <operand>):

body

Note: Indenting the body is

mandatory!

Boolean expression

Branching and making decisions 7

James Tam

The ‘If’ Construct (2)

•Example (if1.py):
age = int(input("Age: "))

if (age >= 18):

print("You are an adult")

James Tam

New Terminology

•Operator/Operation: action being performed

•Operand: the item or items on which the operation is being
performed.

Examples:

2 + 3
2 * (-3)

Branching and making decisions 8

James Tam

Allowable Operands For Boolean Expressions

Format:

if (operand relational operator operand):

Example:
if (age >= 18):

Some operand types
•integer

•floats (~real)

•String

•Boolean (True or False)
•E.g. runProgramAgain = False

Make sure that you are comparing operands of the same type or at the very least they must be
comparable!

James Tam

Allowable Relational Operators For Boolean
Expressions

if (operand relational operator operand) then

Python Mathematical

operator equivalent Meaning Example

< < Less than 5 < 3

> > Greater than 5 > 3

== = Equal to 5 == 3

<= ≤ Less than or equal to 5 <= 5

>= ≥ Greater than or equal to 5 >= 4

!= ≠ Not equal to x != 5

Branching and making decisions 9

James Tam

Common Mistake

•Do not confuse the equality operator '==' with the assignment
operator '='.

•Example (Python syntax error)1:
if (num = 1): # Not the same as if (num == 1):

To be extra safe some programmers put unnamed constants on the

left hand side of an equality operator (which always/almost always

results in a syntax error rather than a logic error if the assignment

operator is used in place of the equality operator).

•A way of producing syntax rather than a logic error:
if (1 = num)

1 This not a syntax error in all programming languages so don’t get complacent and
assume that the language will automatically “take care of things” for you.

James Tam

A Similar Mistake

•Example (Python syntax error, used to a logic error):
num == 1 Not the same as num = 1

Branching and making decisions 10

James Tam

An Application Of Branches

•Branching statements can be used to check the validity of data
(if the data is correct or if the data is a value that’s allowed by
the program).

•General structure:
if (error condition has occurred):

React to the error (at least display an error message)

•Example:
if (age < 0):

print("Age cannot be a negative value")

JT’s tip: if data can only take on a certain value (or range) do not automatically assume

that it will be valid. Check the validity of range before proceeding onto the rest of the

program.

James Tam

Decision Making With An ‘If’: Summary

•Used when a question (Boolean expression) evaluates only to a
true or false value (Boolean):
- If the question evaluates to true then the program reacts differently. It

will execute the body after which it proceeds to the remainder of the
program (which follows the if construct).

- If the question evaluates to false then the program doesn’t react
differently. It just executes the remainder of the program (which follows
the if construct).

Branching and making decisions 11

James Tam

Decision Making With An ‘If-Else’

Question? Execute a statement

or statements (if body)

True

False

Execute a statement

or statements (else body)

Remainder of

the program

James Tam

•Decision making: checking if a condition is true (in which case
something should be done) but unlike ‘if’ also reacting if the
condition is not true (false).

•Format:
if (operand relational operator operand):

body of 'if'

else:

body of 'else'

additional statements

The If-Else Construct

Branching and making decisions 12

James Tam

•Program name: if_else1.py

•Partial example:
if (age < 18):

print("Not an adult")

else:

print("Adult")

print("Tell me more about yourself")

If-Else Construct (2)

Else case

If case

James Tam

Lesson: Read Things The Way They’re Actually Stated
(Instead of How You Think They’re Stated)

You this read wrong

Branching and making decisions 13

James Tam

Lesson: Read Things The Way They’re Actually Stated
(Instead of How You Think They’re Stated)

•Example: Actual Code (previous version <=2012)
if (age >= 18):

print("Adult")

else:

print("Not an adult")

print("Tell me more about yourself")

JT’s note: this version of the program is logically equivalent (does the

same thing) as the version you just saw. For practice trace by hand both

versions to convince yourself that this is the case. Then run both versions

to verify.

James Tam

Lesson: Read Things The Way They’re Actually Stated
(Instead of How You Think They’re Stated)

•Example: How some students interpreted the code (optical
illusion?)
if (age >= 18):

print("Adult")

else:

print("Not an adult")

print("Tell me more about yourself")

JT’s tip: one way of making

sure you read the program

code the way it actually is

written rather than how you

think it should be is to take

breaks from writing/editing

Branching and making decisions 14

James Tam

If-Else Example

•Program name: if_else2.py

•Partial example:
if (income < 10000):

print("Eligible for social assistance")

taxCredit = 100

taxRate = 0.1

else:

print("Not eligible for social assistance")

taxRate = 0.2

tax = (income * taxRate) - taxCredit

James Tam

Quick Summary: If Vs. If-Else

•If:
- Evaluate a Boolean expression (ask a question).

- If the expression evaluates to true then execute the ‘body’ of the if.

- No additional action is taken when the expression evaluates to false.

- Use when your program is supposed to react differently only when the
answer to a question is true (and do nothing different if it’s false).

•If-Else:
- Evaluate a Boolean expression (ask a question).

- If the expression evaluates to true then execute the ‘body’ of the if.

- If the expression evaluates to false then execute the ‘body’ of the else.

- That is: Use when your program is supposed to react differently for both
the true and the false cases.

Branching and making decisions 15

James Tam

Logical Operations

•There are many logical operations but the three most
commonly used in computer programs include:
- Logical AND

- Logical OR

- Logical NOT

James Tam

Logical AND

•The popular usage of the logical AND applies when ALL
conditions must be met.

•Logical AND can be specified more formally in the form of a
truth table.

Truth table (AND)

C1 C2 C1 AND C2

False False False

False True False

True False False

True True True

Branching and making decisions 16

James Tam

Logical AND: Three Input Truth Table

Truth table

C1 C2 C3 C1 AND C2 AND C3

False False False False

False False True False

False True False False

False True True False

True False False False

True False True False

True True False False

True True True True

James Tam

Evaluating Logical AND Expressions

•In class:
- False AND True AND True

•Extra for you to do:
- True AND True AND True

- True AND True AND True AND False

Branching and making decisions 17

James Tam

Logical OR

•The correct everyday usage of the logical OR applies when
ATLEAST one condition must be met.

Truth table

C1 C2 C1 OR C2

False False False

False True True

True False True

True True True

James Tam

Logical OR: Three Input Truth Table

Truth table

C1 C2 C3 C1 OR C2 OR C3

False False False False

False False True True

False True False True

False True True True

True False False True

True False True True

True True False True

True True True True

Branching and making decisions 18

James Tam

Evaluating Logical OR Expressions

•In class:
- False OR True OR True

•Extra for you to do:
- True OR True OR True

- False OR False OR False OR True

James Tam

Logical NOT

•The everyday usage of logical NOT negates (or reverses) a
statement.

•The truth table for logical NOT is quite simple:

Truth table

S Not S

False True

True False

Branching and making decisions 19

James Tam

Evaluating More Complex Logical Expressions

•Order of operation (left to right evaluation if the ‘level’ is
equal)
1. Brackets (inner first)

2. Negation

3. AND

4. OR

James Tam

Evaluating More Complex Logical Expressions

•In class:
- True OR False AND False

- (True OR False) AND False

- NOT False

- NOT NOT False

•Extra for you to do:
- NOT (False OR True) OR True

- (False AND False) OR (False AND True)

- NOT NOT NOT NOT True

- NOT NOT NOT False

Branching and making decisions 20

James Tam

Extra Practice

•(From “Starting out with Python (2nd Edition)” by Tony Gaddis)
Assume the variables a = 2, b = 4, c = 6

For each of the following conditions indicate whether the final value

is true or false.

Expression Final result

a == 4 or b > 2

6 <= c and a > 3

1 != b and c != 3

a >-1 or a <= b

not (a > 2)

James Tam

Logic Can Be Used In Conjunction With
Branching

•Typically the logical operators AND, OR are used with multiple
conditions/Boolean expressions:
- If multiple conditions must all be met before the body will execute. (AND)

- If at least one condition must be met before the body will execute. (OR)

•The logical NOT operator can be used to check for inequality
(not equal to).
- E.g., If it’s true that the user did not enter an invalid value the program

can proceed.

Branching and making decisions 21

James Tam

Decision-Making With Multiple Boolean
Expressions (Connected With Logic)

•Format:
if (Boolean expression) logical operator (Boolean expression):

body

•Example: if_and_positive.py
if (x > 0) and (y > 0):

print("All numbers positive")

James Tam

Forming Compound Boolean Expressions With
The “OR” Operator

•Format:
if (Boolean expression) or (Boolean expression):

body

•Name of the online example: if_or_hiring.py
gpa = float(input("Grade point (0-4.0): "))

yearsJobExperience = int(input("Number of years of job
experience: "))

if (gpa > 3.7) or (yearsJobExperience > 5):

print("You are hired")

else:

print("Insufficient qualifications")

Branching and making decisions 22

James Tam

Forming Compound Boolean Expressions With
The “AND” Operator

•Format:
if (Boolean expression) and (Boolean expression):

body

•Name of the online example: if_and_firing.py
yearsOnJob = int(input("Number of years of job experience:

"))

salary = int(input("Annual salary: "))

if (yearsOnJob <= 2) and (salary > 50000):

print("You are fired")

else:

print("You are retained")

James Tam

The “NOT” Operator

•Format:

if not (Boolean expression):

body

•Name of the online example: if_not.py
- (An equivalent solution can be implemented using the inequality operator

‘!=‘)

SYSTEM_PASSWORD = "password123"

userPassword = input("Password: ")

if not (userPassword == SYSTEM_PASSWORD):

print("Using logical NOT-operator: Wrong password")

Branching and making decisions 23

James Tam

Quick Summary: Using Multiple Expressions

•Use multiple expressions when multiple questions must be
asked and the result of expressions are related:

•AND (strict: all must apply):
•All Boolean expressions must evaluate to true before the entire

expression is true.
•If any expression is false then whole expression evaluates to false.

•OR (less restrictive: at least one must apply):
•If any Boolean expression evaluates to true then the entire expression

evaluates to true.
•All Boolean expressions must evaluate to false before the entire

expression is false.

• Not:
•Negates or reverses the logic of a Boolean expression
•May sometimes be super ceded by the use of an inequality operator

James Tam

Nesting

•Nesting refers to an item that is “inside of” (or “nested in”)
some other item.

•Nested branches: an ‘IF-function’ that is inside of another ‘IF-
function’
- Example (assume that the respondent previously indicated that his or her

birthplace was an Alberta city)
- Select the AB city in which you were born

1. Airdrie

2. Calgary

3. Edmonton

…

•Only when the user specifies residence as Alberta does the program ask for
which Alberta city is the residence

Branching and making decisions 24

James Tam

Recognizing When Nesting Is Needed

•Scenario 1 (IF inside IF, other scenarios are described in the
next section): A second question is asked if a first question
answers true:
- Example: If it’s true the applicant is a Canadian citizen, then ask for the

person’s income (checking if eligible for social assistance).

- Type of nesting: an IF-branch nested inside of another IF-branch
If (Boolean):

If (Boolean):
...

James Tam

Nested Decision Making

•Decision making is dependent.

•The first decision must evaluate to true (“gate keeper”) before
successive decisions are even considered for evaluation.

Question 1?
True

Question 2?
True Statement or

statements

Remainder of

the program

False
False

Branching and making decisions 25

James Tam

Nested Decision Making

•One decision is made inside another.

•Outer decisions must evaluate to true before inner decisions
are even considered for evaluation.

•Format:
if (Boolean expression):

if (Boolean expression):

body

Outer body

Inner body

James Tam

Nested Decision Making (2)

•Partial example: nesting.py
if (income < 10000):

if (citizen == 'y'):

print("This person can receive social assistance")

taxCredit = 100

tax = (income * TAX_RATE) - taxCredit

Branching and making decisions 26

James Tam

Question

•What’s the difference between employing nested decision
making and a logical AND?

James Tam

Decision-Making With Multiple
Alternatives/Questions

• IF (single question)
- Checks a condition and executes a body if the condition is true

• IF-ELSE (single question)
- Checks a condition and executes one body of code if the condition is

true and another body if the condition is false

• Approaches for multiple (two or more) questions
- Multiple IF's

- IF-ELIF-ELSE

Branching and making decisions 27

James Tam

Decision Making With Multiple If’s

Question?

True

Statement or

statements

True

Statement or

statements

Question?

Remainder of

the program

False

False

James Tam

Multiple If's: Non-Exclusive Conditions

•Any, all or none of the conditions may be true (independent)

•Employ when a series of independent questions will be asked

•Format:
if (Boolean expression 1):

body 1

if (Boolean expression 2):

body 2

:

statements after the conditions

Branching and making decisions 28

James Tam

Multiple If's: Non-Exclusive Conditions
(Example)

•Example:
if (ableAge > 0):

print("Happy birthday!")

if (bakerAge > 0):

print("Happy birthday!")

if (foxtrotAge > 0):

print("Happy birthday!")

James Tam

Multiple If's: Mutually Exclusive Conditions

•At most only one of many conditions can be true

•Can be implemented through multiple if's

•Example: The name of the complete online program is:
“grades_inefficient.py”
if (letter == "A"):

gpa = 4

if (letter == "B"):

gpa = 3

if (letter == "C"):

gpa = 2

if (letter == "D"):

print("Min pass")

gpa = 1

if (letter == "F"):

print ("Failing grade")

gpa = 0

Inefficient

combination!

Branching and making decisions 29

James Tam

Decision Making With If-Elif-Else

Question?
True

Statement or

statements

False

Question?

Remainder of

the program

Statement or

statements

False

True
Statement or

statements

James Tam

Multiple If-Elif-Else: Use With Mutually
Exclusive Conditions

•Format:
if (Boolean expression 1):

body 1

elif (Boolean expression 2):

body 2

:

else

body n

statements after the conditions

Mutually exclusive
•One condition evaluating to
true excludes other conditions
from being true
•Example: having your current
location as ‘Calgary’ excludes
the possibility of the current
location as ‘Edmonton’,
‘Toronto’, ‘Medicine Hat’

Branching and making decisions 30

James Tam

If-Elif-Else: Mutually Exclusive Conditions
(Example)

•Example: The name of the complete online program is:
“grades_efficient.py”
if (letter == "A"):

gpa = 4

elif (letter == "B"):

gpa = 3

elif (letter == "C"):

gpa = 2

elif (letter == "D"):

gpa = 1

elif (letter == "F"):

gpa = 0

else:

print ("GPA must be one of 'A', 'B', 'C', 'D' or 'F'")

This approach is more

efficient when at most

only one condition can

be true.

Extra benefit:

The body of the else executes only when all the

Boolean expressions are false. (Useful for error

checking/handling).

James Tam

When To Use Multiple-Ifs

•When all conditions must be checked (more than one Boolean
expressions for each ‘if’ can be true).
- Non-exclusive conditions

•Example:
- Some survey questions:

•When all the questions must be asked
•The answers to previous questions will not affect the asking of later questions

E.g.,

Q1: What is your gender?

Q2: What is your age?

Q3: What is your country of birth?

Branching and making decisions 31

James Tam

When To Use If, ElIfs

•When all conditions may be checked but at most only one
Boolean expression can evaluate to true.
- Exclusive conditions

•Example:
- Survey questions:

•When only some of the questions will be asked
•The answers to previous questions WILL affect the asking of later questions

E.g.,

Q1: Were you born in BC?

Q2 (ask only if the person answered ‘no’ to the previous): Were you born in
AB?

Q3 (ask only if the person answered ‘no’ to the previous questions): Were you
born in SK?

…

James Tam

Extra Practice

•(From “Starting out with Python” by Tony Gaddis).

Write a program that prompts the user to enter a number within the

range of 1 through 10. The program should display the Roman

numeral version of that number. If the number is outside the range

of 1 through 10, the program should display an error message.

The table on the next slide shows the Roman numerals for the

numbers 1 through 10.

Branching and making decisions 32

James Tam

Extra Practice (2)

Number Roman Numeral

1 I

2 II

3 III

4 IV

5 V

6 VI

7 VII

8 VIII

9 IX

10 X

James Tam

Recap: What Decision Making Mechanisms Are
Available /When To Use Them

Mechanism When To Use

If Evaluate a Boolean expression and execute some code

(body) if it’s true

If-else Evaluate a Boolean expression and execute some code

(first body: ‘if’) if it’s true, execute alternate code (second

body: ‘else’) if it’s false

Multiple
if’s

Multiple Boolean expressions need to be evaluated with

the answer for each expression being independent of the

answers for the others (non-exclusive). Separate

instructions (bodies) can be executed for each expression.

If-elif-
else

Multiple Boolean expressions need to be evaluated but

zero or at most only one of them can be true (mutually

exclusive). Zero bodies or exactly one body will execute.

Also it allows for a separate body (else-case) to execute

when all the if-elif Boolean expressions are false.

Branching and making decisions 33

James Tam

Recap: When To Use Compound And Nested
Decision Making

Mechanism When To Use

Compound

decision

making

There may have to be more than one condition to be

considered before the body can execute. All

expressions must evaluate to true (AND) or at least

one expression must evaluate to true (OR).

Nested

decision

making

The outer Boolean expression (“gate keeper”) must

be true before the inner expression will even be

evaluated. (Inner Boolean expression is part of the

body of the outer Boolean expression).

James Tam

Testing Decision Making Constructs

•Make sure that the body of each decision making mechanism
executes when it should.

•Test:

1) Obvious true cases

2) Obvious false cases

3) Boundary cases

Branching and making decisions 34

James Tam

Testing Decisions: An Example

Program name: first_test_example.py
num = int(input("Type in a value for num: "))

if (num >= 0):

print("Num is non-negative. ")

else:

print("Num is negative. ")

James Tam

Lesson: Avoid Using A Float When An Integer
Will Do

Program name: real_test.py
num = 1.0 - 0.55

if (num == 0.45):

print("Forty five")

else:

print("Not forty five")

Branching and making decisions 35

James Tam

Epsilon

•Because floating point numbers are only approximations of
real numbers when performing a comparison “seeing if two
numbers are ‘close’ to each other” sometimes an Epsilon is
used instead of zero.

•Epsilon is a very small number.

•If the absolute difference between the numbers is less than
the Epsilon then the numbers are pretty close to each other
(likely equal).

James Tam

Not Using Epsilon: Floating Point Error

Example name: no_epsilon.py
a = 0.15 + 0.15

b = 0.2 + 0.1

if (a == b):

print("Equal")

else:

print("Not equal")

Branching and making decisions 36

James Tam

Using Epsilon: Better Approach

Example name: employing_epsilon.py

EPSILON = 0.00001

a = 0.15 + 0.15

b = 0.2 + 0.1

if (abs((a - b)/b) < EPSILON):

print("Equal: the different is less than a small number")

else:

print("Not equal")

James Tam

Extra Practice

•(From “Starting out with Python” by Tony Gaddis)

The following code contains several nested if-else statements.

Unfortunately it was written without proper alignment and

indentation. Rewrite the code and use the proper conventions of

alignment and indentation.

Branching and making decisions 37

James Tam

Extra Practice (2)

Grade cut-offs

A_SCORE = 90

B_SCORE = 80

C_SCORE = 70

D_SCORE = 60

if (score >= A_SCORE):

print("Your grade is A")

else:

if (score >= B_SCORE):

print("Your grade is B")

else:

if (score >= C_SCORE):

print("Your grade is C")

else:

if (score >= D_SCORE):

print("Your grade is D")

else:

print("Your grade is F")

Common student question: If

there isn’t a pre-created solution

then how do I know if I “got this

right”?

James Tam

Rule Of Thumb: Branches

•Be careful that your earlier cases don’t include the later cases
if each case is supposed to be handled separately and
exclusively.

Example 1

if (num >= 0):

elif (num >= 10):

elif (num >= 100):

Example 2

if (num >= 100):

elif (num >= 10):

elif (num >= 0):

Branching and making decisions 38

James Tam

Extra Practice: Grades

•Write a program that converts percentages to one of the
following letter grades: A (90 – 100%), B (80 – 89%), C (70 –

79%), D (60 – 69%), F (0 – 59%).

First approach

if (percentage <= 100) or (percentage >= 90):

letter = 'A'

elif (percentage <= 89) or (percentage >= 80):

letter = 'B'

Etc.

Second approach

if (percentage <= 100) and (percentage >= 90):

letter = 'A'

elif (percentage <= 89) and (percentage >= 80):

letter = 'B'

Etc.

James Tam

Decision Making: Checking Matches

•Python provides a quick way of checking for matches within a
set.
- E.g., for a menu driven program the user’s response is one of the values

in the set of valid responses.

Format:
(Strings)
if <string variable> in ("<string1> <string2>...<stringn>"):

body

(Numeric)
if <numeric variable> in (<number1>, <number2>,...<numbern>):

body

Branching and making decisions 39

James Tam

Decision Making: Checking Matches (2)

Example:
(String):

if "the" in ("thetheretheir"):

print("the is a sub-string of thetheretheir ")

else:

print("not sub-string")

answer = input("Selection: ")

if answer in ("one two seven"):

print("selection taken")

else:

print("selection available")

(Numeric):

if num in (1, 2, 3):

print("in set“)

James Tam

Checking Matches: Another Example

•Complete example: user_names.py
userNames = ""

print("User names already been taken [%s]" %userNames)

userName = input("Enter a user name: ")

if (userName in userNames):

print("Name %s has already been taken" %userName)

else:

userNames = userNames + userName + " "

print()

Branching and making decisions 40

James Tam

Checking Matches: Another Example (2)

print("User names already been taken [%s]" %userNames)

userName = input("Enter a user name: ")

if (userName in userNames):

print("Name %s has already been taken" %userName)

else:

userNames = userNames + userName + " "

print()

print("Set of user name [%s]" %userNames)

James Tam

After This Section You Should Now Know

•What are the three decision making constructs available in
Python:

- If

- If-else

- If-elif-else

- How does each one work

- When should each one be used

•Three logical operations:
- AND

- OR

- NOT

•How to evaluate and use decision making constructs:
- Tracing the execution of simple decision making constructs

- How to evaluate nested and compound decision making constructs and
when to use them

Branching and making decisions 41

James Tam

After This Section You Should Now Know (2)

•How the bodies of the decision making constructs are defined:
- What is the body of a decision making construct

- What is the difference between decision making constructs with simple
bodies and those with compound bodies

•What is an operand

•What is a relational operator

•What is a Boolean expression

•How multiple expressions are evaluated and how the different
logical operators work

•How to test decision making constructs

James Tam

Copyright Notification

•“Unless otherwise indicated, all images in this presentation
are used with permission from Microsoft.”

slide 82

