
Repetition using loops 1

James Tam

CPSC 231:
Loops In Python

In this section of notes you will learn
how to rerun parts of your program
without duplicating instructions.

James Tam

Repetition: Computer View

•Continuing a process as long as a certain condition has been
met.

Ask for age as long as the answer is negative (outside
allowable range)

How old are?

Minus 21!

How old are?

Minus 21!

Repetition using loops 2

James Tam

Looping/Repetition

•How to get the program or portions of the program to
automatically re-run
- Without duplicating the instructions

- Example: you need to calculate tax for multiple people

Ask for income

Calculate deductions

Display amounts

Loop: allows you to

repeat the same

tasks over and over

again

James Tam

How To Determine If Loops Can Be Applied

•Something needs to occur multiple times (generally it will
repeat itself as long as some condition has been met).

•Example 1:

Re-running the entire

program

While the player wants to play

Run the game again

Play again?

Run game again

Y

END GAME

N

Flowchart

Pseudo code

Repetition using loops 3

James Tam

How To Determine If Loops Can Be Applied (2)

•Example 2:

Invalid input?

Ask for input again

Y

N

…rest of

program

While input is invalid

Prompt user for input

Flowchart Pseudo code

Re-running specific parts of the program

James Tam

Basic Structure Of Loops

Whether or not a part of a program repeats is determined by a
loop control (typically the control is just a variable).
• Initialize the control to the starting value

• Executing the body of the loop (the part to be repeated)

• Update the value of the control

• Somewhere: Testing the control against a stopping condition (Boolean
expression)

• Without this test the loop will never end (endless loop)

Repetition using loops 4

James Tam

Pre-Test Loops

Pre-test loops
- Check the stopping condition before

executing the body of the loop.

- The loop executes zero or more
times.

1. Initialize loop control

2. Check if the repeating condition
has been met
a. If it’s been met then go to Step 3

b. If it hasn’t been met then the loop
ends

3. Execute the body of the loop
(the part to be repeated)

4. Update the loop control

5. Go to step 2

Initialize loop control

Execute body

Condition

met?

Update control

After the loop

(done looping)

No

Yes

James Tam

Post-Test Loops (Not Implemented In Python)

Post-test loops
- Checking the stopping condition after

executing the body of the loop.

- The loop executes one or more times.

1. Initialize loop control (sometimes not
needed because initialization occurs
when the control is updated)

2. Execute the body of the loop (the
part to be repeated)

3. Update the loop control

4. Check if the repetition condition has
been met
a. If the condition has been met then go

through the loop again (go to Step 2)
b. If the condition hasn’t been met then

the loop ends.

Initialize loop control

Execute body

Update control

Yes Condition

met?

After the loop

(done looping)

No

Repetition using loops 5

James Tam

Loops In Python

•Pre-test: for, while

•Post-test: none

James Tam

The While Loop

•This type of loop can be used if it’s not known in advance how
many times that the loop will repeat (most powerful type of
loop, any other type of loop can be simulated with a while loop).
- It can repeat so long as some arbitrary condition holds true.

•Format:
(Simple condition)
while (Boolean expression):

body

(Compound condition)
while ((Boolean expression) Boolean operator (Boolean expression)):

body

Repetition using loops 6

James Tam

The While Loop (2)

•Program name: while1.py

i = 1

while (i <= 3):

print("i =", i)

i = i + 1

print("Done!")

1) Initialize control

2) Check condition

3) Execute body

4) Update control

James Tam

The While Loop (2)

•Program name: while1.py

i = 1

while (i <= 3):

print("i =", i)

i = i + 1

print("Done!")

Repetition using loops 7

James Tam

Countdown Loop

•Program name: while2.py
i = 3

while (i >= 1):

print("i =", i)

i = i - 1

print("Done!")

James Tam

Common Mistakes: While Loops

•Forgetting to include the basic parts of a loop.
- Updating the control

i = 1

while(i <= 4):

print("i =", i)

i = i + 1

Repetition using loops 8

James Tam

Practice Exercise #1

•The following program that prompts for and displays the
user’s age.

•Modifications:
- As long as the user enters a negative age the program will continue

prompting for age.

- After a valid age has been entered then stop the prompts and display the
age.

age = int(input("Age: "))

print(age)

James Tam

The For Loop

•In Python a for-loop is used to step through a sequence e.g.,
count through a series of numbers or step through the lines in
a file.

•Syntax:
for <name of loop control> in <something that can be iterated>:

body

•Program name: for1.py

for i in range (1, 4, 1):

print("i=", i)

print("Done!")

1) Initialize control

2) Check condition

3) Execute body

4) Update control

Repetition using loops 9

James Tam

The For Loop

•In Python a for-loop is used to step through a sequence

•Syntax:
for <name of loop control> in <something that can be iterated>:

body

•Program name: for1.py
i = 0

total = 0

for i in range (1, 4, 1):

total = total + i

print("i=", i, "\ttotal=", total)

print("Done!")

James Tam

Counting Down With A For Loop

•Program name: for2.py
for i in range (3, 0, -1):

print("i = ", i)

print("Done!")

Repetition using loops 10

James Tam

For Loop: Stepping Through A Sequence Of
Characters

•Recall: A for-loop in Python can step through any iteratable
sequence (number sequence, characters in a string, lines in a
file).

•Example: for3.py
activity = input("What are you doing with dog now: ")

print("We are taking the dog for a '", end="")

for ch in activity:

print(ch + "-", end="")

print("'")

James Tam

Erroneous For Loops (If There Is Time)

•The logic of the loop is such that the end condition has already
been reached with the start condition.

•Example: for_error.py
for i in range (5, 0, 1):

print("i = ",i)

print("Done!")

Repetition using loops 11

James Tam

Loop Increments Need Not Be Limited To One

•While: while_increment5.py
i = 0

while (i <= 100):

print("i =", i)

i = i + 5

print("Done!")

•For: for_increment5.py
for i in range (0, 105, 5):

print("i =", i)

print("Done!")

James Tam

Sentinel Controlled Loops

•The stopping condition for the loop occurs when the ‘sentinel’
value is reached e.g. sentinel: number less than zero (negative)

•Program name: sum.py
total = 0

temp = 0

while(temp >= 0):

temp = input ("Enter a non-negative integer (negative to end

series): ")

temp = int(temp)

if (temp >= 0):

total = total + temp

print("Sum total of the series:", total)

Q: What if the user
just entered a single
negative number?

Repetition using loops 12

James Tam

Sentinel Controlled Loops (2)

•Sentinel controlled loops are frequently used in conjunction
with the error checking of input.

•Example (sentinel value is one of the valid menu selections,
repeat while selection is not one of these selections)
selection = " "

while selection not in ("a", "A", "r", "R", "m", "M", "q", "Q"):

print("Menu options")

print("(a)dd a new player to the game")

print("(r)emove a player from the game")

print("(m)odify player")

print("(q)uit game")

selection = input("Enter your selection: ")

if selection not in ("a", "A", "r", "R", "m", "M", "q", "Q"):

print("Please enter one of 'a', 'r', 'm' or 'q' ")

Valid option

entered, loop ends

James Tam

Recap: What Looping Constructs Are Available
In Python/When To Use Them

Construct When To Use

Pre-test loops You want the stopping condition to be checked before the loop
body is executed (typically used when you want a loop to
execute zero or more times).

• While • The most powerful looping construct: you can write a ‘while’ loop
to mimic the behavior of any other type of loop. In general it
should be used when you want a pre-test loop which can be used
for most any arbitrary stopping condition e.g., execute the loop as
long as the user doesn’t enter a negative number.

• For • In Python it can be used to step through some sequence

Post-test:
None in
Python

You want to execute the body of the loop before checking the
stopping condition (typically used to ensure that the body of
the loop will execute at least once). The logic can be simulated
with a while loop.

Repetition using loops 13

James Tam

Common Mistake #1

•Mixing up branches (IF and variations) vs. loops (while)

•Related (both employ a Boolean expression) but they are not
identical

•Branches
- General principle: If the Boolean evaluates to true then execute a

statement or statements (once)

- Example: display a popup message if the number of typographical errors
exceeds a cutoff.

•Loops
- General principle: As long as (or while) the Boolean evaluates to true then

execute a statement or statements (multiple times)

- Example: While there are documents in a folder that the program hasn’t
printed then continue to open another document and print it.

James Tam

Common Mistake #1: Example

•Name of the file containing the program: branchVsLoop.py

•Contrast

age = int(input("Age positive only: "))
if (age < 0):

age = int(input("Age positive only: "))
print("Branch:", age)

age = int(input("Age positive only: "))
while (age < 0):

age = int(input("Age positive only: "))
print("Loop:", age)

Vs.

Repetition using loops 14

James Tam

Nesting

•Recall: Nested branches (one inside the other)
- Nested branches:
If (Boolean):

If (Boolean):

...

•Branches and loops (for, while) can be nested within each
other
Scenario 1 # Scenario 2

loop (Boolean): if (Boolean):

if (Boolean): loop (Boolean):

... ...

Scenario 3

loop (Boolean):

loop (Boolean):

...

James Tam

Recognizing When Looping & Nesting Is
Needed

•Scenario 1: As long some condition is met a question will be
asked. As the question is asked if the answer is invalid then an
error message will be displayed.
- Example: While the user entered an invalid value for age (too high or too

low) then if the age is too low an error message will be displayed.

- Type of nesting: an IF-branch nested inside of a loop
loop (Boolean):

if (Boolean):
...

Repetition using loops 15

James Tam

IF Nested Inside A While

•Word document containing the example:
nestingIFinsideWHILE.py

age = - 1

MIN_AGE = 1

MAX_AGE = 118

age = int(input("How old are you (1-118): "))

while ((age < MIN_AGE) or (age > MAX_AGE)):

if (age < MIN_AGE):

print("Age cannot be lower than", MIN_AGE, "years")

age = int(input("How old are you (1-118): "))

print("Age=", age, "is age-okay")

James Tam

Recognizing When Looping & Nesting Is
Needed

•Scenario 2: If a question answers true then check if a process
should be repeated.
- Example: If the user specified the country of residence as Canada then

repeatedly prompt for the province of residence as long as the province
is not valid.

- Type of nesting: a loop nested inside of an IF-branch
If (Boolean):

loop ():
...

Repetition using loops 16

James Tam

While Nested Inside An IF

•Word document containing the example:
nestingWHILEinsideIF.py

country = ""

province = ""

country = input("What is your country of citizenship: ")

if (country == "Canada"):

province = input("What is your province of citizenship: ")

while ((province != "AB") and (province != "BC")):

print("Valid provinces: AB, BC")

province = input("What is your province of citizenship: ")

print("Country:", country, ", Province:",province)

James Tam

Recognizing When Looping & Nesting Is
Needed

•Scenario 3: While one process is repeated, repeat another
process.
- More specifically: for each step in the first process repeat the second

process from start to end

- Example: While the user indicates that he/she wants to calculate another
tax return prompt the user for income, while the income is invalid
repeatedly prompt for income.

- Type of nesting: a loop nested inside of an another loop
Loop():

Loop():
...

Repetition using loops 17

James Tam

Pseudo Code

•A high level solution or algorithm that is not specified in a
programming language.

•Instead English-like statements are used.
- “A high-level description of the actions of a program or algorithm, using a

mixture of English and informal programming language syntax” – Python

for Everyone (Horstmann, Necaise)

•Benefits: it allows the programmer to focus on the solution
without spending a lot time worrying about details such as
syntax.

James Tam

Nested Loop: Example Process In Pseudo Code

Do While (user wants to calculate another return)

Do While (salary invalid)

Get salary information

Do While (investment income invalid)

Get investment income

…

Each time we

have a tax

return to

calculate

Complete

each of these

steps from

start to end

For each client as

long as salary

invalid repeatedly

prompt

Repetition using loops 18

James Tam

While Nested Inside Another While

•Word document containing the example:
nestingWHILEinsideWHILE.py

MIN_INCOME = 0

runAgain = "yes"

while (runAgain == "yes"):

print("CALCULATING A TAX RETURN")

income = -1

while (income < MIN_INCOME):

income = int(input("Income $"))

runAgain = input("To calculate another return enter 'yes': ")

James Tam

Analyzing Another Nested Loop

•One loop executes inside of another loop(s).
•Example structure:
Outer loop (runs n times)

Inner loop (runs m times)
Body of inner loop (runs n x m times)

• Program name: nested.py
i = 1
while (i <= 2):

j = 1
while (j <= 3):

print("i = ", i, " j = ", j)
j = j + 1

i = i + 1
print("Done!")

Repetition using loops 19

James Tam

Practice Example #2: Nesting

1. Write a program that will count out all the numbers from one
to six.

2. For each of the numbers in this sequence the program will
determine if the current count (1 – 6) is odd or even.

a) The program display the value of the current count as well an indication
whether it is odd or even.

• Which Step (#1 or #2) should be completed first?

James Tam

Step #1 Completed: Now What?

•For each number in the sequence determine if it is odd or
even.

•This can be done with the modulo (remainder) operator: %
- An even number modulo 2 equals zero (2, 4, 6 etc. even divide into 2 and

yield a remainder or modulo of zero).

-if (counter % 2 == 0): # Even

- An odd number modulo 2 does not equal zero (1, 3, 5, etc.)

•Pseudo code visualization of the problem
Loop to count from 1 to 6

Determine if number is odd/even and display message
End Loop
- Determining whether a number is odd/even is a part of counting through

the sequence from 1 – 6, checking odd/even is nested within the loop

Repetition using loops 20

James Tam

The Break Instruction

•It is used to terminate the repetition of a loop which is separate
from the main Boolean expression (it’s another, separate
Boolean expression).

•General structure:
for (Condition 1): while (Condition 1):

if (Condition 2): if (Condition 2):

break break

•Specific example (mostly for illustration purposes at this point):
break.py

str1 = input("Enter a series of lower case alphabetic characters: ")

for temp in str1:

if ((temp < 'a') or (temp > 'z')):

break

print(temp)

print("Done")

Q: What if the user
just typed ‘abc’ and hit
enter?

James Tam

The Break Should Be Rarely Used

•Adding an extra exit point in a loop (aside from the Boolean
expression in the while loop) may make it harder to trace
execution (leads to ‘spaghetti’ programming).

(while)

Boolean met?

Instruction

Y

N

…rest of program

(If)

Boolean met?

Y

N

JT: While adding a
single break may not
always result in
‘spaghetti’ it’s the
beginning of a bad
habit that may result
in difficult to trace
programs

Repetition using loops 21

James Tam

An Alternate To Using A ‘Break’

•Instead of an ‘if’ and ‘break’ inside the body of the loop
while (BE1):

if (BE2):

break

• Add the second Boolean expression as part of the loop’s
main Boolean expression

while ((BE1) and not (BE2)):

James Tam

Another Alternative To Using A ‘Break’

•If the multiple Boolean expressions become too complex
consider using a ‘flag’

flag = True

while (flag == True):

if (BE1):

flag = False

if (BE2)

flag = False

Otherwise the flag remains set to true

BE = A Boolean expression

•Both of these approaches still provide the advantage of a
single exit point from the loop.

Repetition using loops 22

James Tam

Infinite Loops

•Infinite loops never end (the stopping condition is never met).

•They can be caused by logical errors:
- The loop control is never updated (Example 1 – below).

- The updating of the loop control never brings it closer to the stopping
condition (Example 2 – next slide).

•Example 1: infinite1.py
i = 1

while (i <= 10):

print("i = ", i)

i = i + 1

To stop a program with an infinite loop in Unix simultaneously press the <ctrl> and the <c> keys

James Tam

Infinite Loops (2)

•Example 2: infinite2.py

i = 10

while (i > 0):

print("i = ", i)

i = i + 1

print("Done!")

To stop a program with an infinite loop in Unix simultaneously press the <ctrl> and the <c> keys

Repetition using loops 23

James Tam

Testing Loops

•Make sure that the loop executes the proper number of times.

•Test conditions:
1) Loop does not run

2) Loop runs exactly once

3) Loop runs exactly ‘n’ times

James Tam

Testing Loops: An Example

Program name: testing.py

sum = 0

i = 1

last = 0

last = int(input("Enter the last number in the sequence to sum : "))

while (i <= last):

sum = sum + i

print("i = ", i)

i = i + 1

print("sum =", sum)

Repetition using loops 24

James Tam

Extra Practice #3

•Write a loop that will continue repeating if the user enters a
value that is negative.

•Write a program that will prompt the user for number and an
exponent. Using a loop the program will calculate the value of
the number raised to the exponent.
- To keep it simple you can limit the program to non-negative exponents.

James Tam

Not So Friendly Examples (If There Is Time)

Repetition using loops 25

James Tam

Some Rules (Of Thumb) For Designing Software
(If There Is Time)

•(The following list comes from Jakob Nielsen’s 10 usability
heuristics from the book “Usability Engineering”

1. Minimize the user’s memory load

2. Be consistent

3. Provide feedback

4. Provide clearly marked exits

5. Deal with errors in a helpful and
positive manner

James Tam

1. Minimize The User’s Memory Load (If There
Is Time)

•Computers are good at ‘remembering’ large amounts of
information.

•People are not so good remembering things.

slide 52

Repetition using loops 26

James Tam

1. Minimize The User’s Memory Load (If There
Is Time)

•To reduce the memory load of the user:

- Describe required the input format, show examples of valid input,
provide default inputs

•Examples:

Example 1:

Example 2:

James Tam

2. Be Consistent (If There Is Time)

•Consistency of effects
- Same words, commands, actions will always have the same effect in

equivalent situations

- Makes the system more predictable

- Reduces memory load

•Consistency of layout
- Allows experienced users to predict where things should be (matches

expectations)

Repetition using loops 27

James Tam

2. Be Consistent (If There Is Time)

•Consistency of language and graphics
- Same information/controls in same location on all screens / dialog boxes

forms follow boiler plate.

- Same visual appearance across the system (e.g. widgets).

Images courteousey of

James Tam

James Tam

2. Be Consistent (If There Is Time)

This last

option

allows the

user to

proceed to

the next

question.

Repetition using loops 28

James Tam

3. Provide Feedback (If There Is Time)

•Letting the user know:
- What the program is currently doing: was the last command understood,

has it finished with it’s current task, what task is it currently working on,
how long will the current task take etc.

James Tam

3. Provide Feedback (If There Is Time)

•What is the program doing?

Outlook Express image courteously

of James Tam

Repetition using loops 29

James Tam

3. Provide Feedback (If There Is Time)

•The rather unfortunate effect on the (poor) recipient.

Outlook Express image courteously

of James Tam

James Tam

3. Provide Feedback (If There Is Time)

•In terms of this course, feedback is appropriate for instructions
that may not successfully execute
- what the program is doing (e.g., opening a file),

- what errors may have occurred (e.g., could not open file),

- and why (e.g., file “input.txt” could not be found)

•...it’s not hard to do and not only provides useful updates with
the state of the program (“Is the program almost finished
yet?”) but also some clues as to how to avoid the error (e.g.,
make sure that the input file is in the specified directory).

•At this point your program should at least be able to provide
some rudimentary feedback
- E.g., if a negative value is entered for age then the program can remind

the user what is a valid value (the valid value should likely be shown to
the user as he or she enters the value):

age = int(input ("Enter age (0 – 114): "))

Repetition using loops 30

James Tam

4. Provide Clearly Marked Exits (If There Is
Time)

•This should obviously mean that quitting the program should
be self-evident (although this is not always the case with all
programs!).

•In a more subtle fashion it refers to providing the user the
ability to reverse or take back past actions (e.g., the person was
just experimenting with the program so it shouldn’t be ‘locked’
into mode that is difficult to exit).

•Users should also be able to terminate lengthy operations as
needed.

James Tam

4. Provide Clearly Marked Exits (If There Is
Time)

•This doesn’t just mean providing an exit from the program but
the ability to ‘exit’ (take back) the current action.
- Universal Undo/Redo

•e.g., <Ctrl>-<Z> and <Ctrl>-<Y>

- Progress indicator & Interrupt
- Length operations

Image: From the “HCI Hall of Shame”

Repetition using loops 31

James Tam

4. Provide Clearly Marked Exits (If There Is
Time)

•Restoring defaults
- Getting back original settings

• Allows for defaults to
be quickly restored

• What option did I
change?

• What was the
original setting?

Image: Internet Explorer security settings curtesy ofJames Tam

James Tam

4. Provide Clearly Marked Exits (If There Is
Time)

The user can skip or

‘exit’ any question

Image: An old CPSC 231 assignment curtesy of James Tam

Repetition using loops 32

James Tam

5. Deal With Errors In A Helpful And
Positive Manner (If There Is Time)

•(JT: with this the heuristic it states exactly what should be
done).

James Tam

Rules Of Thumb For Error Messages (If There Is
Time)

1. Polite and non-intimidating
- Don’t make people feel stupid
– Try again, bonehead!

2. Understandable
- Error 25

3. Specific
- Cannot open this document

- Cannot open “chapter 5” because the application “Microsoft Word”
is not on your system

4. Helpful
- Cannot open “chapter 5” because the application “Microsoft Word”

is not on your system. Open it with “WordPad” instead?

No

Not
AutoCAD Mechanical

So obvious it could
never happen?

Why?

Better

Even better: A
potentially helpful
suggestion

Repetition using loops 33

James Tam

“HIT ANY KEY TO CONTINUE”

(If There Is Time)

James Tam

THE “Any Key”

Image: Curtesy of James Tam

(If There Is Time)

Repetition using loops 34

James Tam

I’d Rather Deal With The ‘Any’ Key (If There Is
Time)

Picture courtesy of James Tam: An error message from a Dell desktop computer

James Tam

After This Section You Should Now Know

•When and why are loops used in computer programs

•What is the difference between pre-test loops and post-test
loops

•How to trace the execution of pre-test loops

•How to properly write the code for a loop in a program

•What are nested loops and how do you trace their execution

•How to test loops

•Some rules of thumb for interaction design (if there is time)
1.Minimize the user’s memory load
2.Be consistent
3.Provide feedback
4.Provide clearly marked exits
5.Deal with errors in a helpful and

positive manner

Repetition using loops 35

James Tam

Copyright Notification

•“Unless otherwise indicated, all images in this presentation
are used with permission from Microsoft.”

slide 71

