Min-Cost Multicast Networks in Euclidean Space

Xunrui Yin, Yan Wang, Xin Wang, Xiangyang Xue1
Zongpeng Li23

1Fudan University
Shanghai, China

2University of Calgary
Alberta, Canada

3Institute of Network Coding,
Chinese University of Hong Kong, Hong Kong

July 3, 2012
Multicast Network Design

Problem

Design a network of minimum cost to support a unit multicast throughput among given terminals.

- Nodes are located in an Euclidean Space
- The cost of a link is defined as its capacity \times its length
- Relay nodes may be added without extra cost
Related: The Euclidean Steiner Tree Problem

Gauss, 1836: how can a railway network of minimal length which connects the four German cities **Bremen**, **Hamburg**, **Hannover**, and **Braunschweig** be created?
Related: The Euclidean Steiner Tree Problem

Gauss, 1836: how can a railway network of minimal length which connects the four German cities Bremen, Hamburg, Hannover, and Braunschweig be created?
The Difference

Information Flow \neq Commodity Flow

Due to Network Coding:

- Information flows can be both replicated and mixed during transmission.
- The min-cost network may not be a tree.
Example

(a) minimum information network

(b) minimum Steiner tree

Total Cost: $3\sqrt{3}m \times 0.5\text{bps} = 2.598 \text{ m}\cdot\text{bps}$

Total Cost: $\sqrt{7}m \times 1\text{bps} = 2.646 \text{ m}\cdot\text{bps}$
Another Example

Total Cost: $7.746m \times 0.5\text{bps} = 3.873 \text{ m\cdotbps}$

Total Cost: $3.947m \times 1\text{bps} = 3.947 \text{ m\cdotbps}$
Problem Formulation

- **Input**: the positions of source s and receivers R.
- **Output**: a directed network $D(V, A)$ with link capacity c and the position of inserted relay nodes.
- **Satisfying**: D can support a multicast session of unit rate.
- **Minimizing**: the cost of D.

Information Flow in Space

| minimize | $\sum_{uv \in A} c(\rightarrow uv) \ | \ uv \ |$ |
|----------|-------------------------------------|
| subject to | $\sum_{v \in V} [f^t(\rightarrow uv) - f^t(\rightarrow vu)] = \delta^t(u) \ \forall t \in R, \forall u \in V$ |
| | $0 \leq f^t(\rightarrow uv) \leq c(\rightarrow uv) \ \forall t \in R, \forall u, v \in V$ |
Discrete System Model

- Assume link capacities take rational values.
- Scale each capacity with some integer h to get an integral capacitated network.
- Use parallel links of unit capacity instead.

Optimization Problem

$$\min_{h \in \mathbb{N}_+} \frac{1}{h} \sum_{\vec{u}\vec{v} \in A} |\vec{u}\vec{v}|$$

subject to: $\lambda_D(s, t) \geq h, \quad \forall t \in R$

The Euclidean Steiner Tree Problem can be viewed as a special case with $h = 1$.
The 1-to-2 Multicast Case

Theorem 1

If there are only 3 terminals, the minimum Steiner tree achieves the minimum cost, which can not be improved by network coding.

- For multicast in a network (instead of in a space), network coding starts to make a difference for three terminals.
- We have seen an example of 6 terminals where network coding makes a difference. The cases of 4 and 5 terminals are unknown.
Proof Sketch

- The minimum Steiner tree for 3 terminals has one relay node located at the Fermat point.
- It is sufficient to prove that the nodes of min-cost multicast network lie on the minimum Steiner tree.

Wedge Property [Gilbert and Pollak, 1968]

Let $W \subset \mathbb{R}^2$ be any open wedge-shaped region with an angle of at least 120°. If W does not contain any terminal node and each relay node has degree 3 at most, W contains no relay node.
Proof Sketch (continue)

- By the Wedge Property, it is sufficient to show that the relay nodes in the min-cost network have degree 3 at most.
- For relay node of degree larger than 3, we can split it without reducing the max flow to each receiver.

This is because we have 2 receiver, the flow on a link has 3 types: (0,1) (1,0) (1,1).
Bounding the Number of Relay Nodes

- There is a possibility the min cost can not be achieved by finite networks.
- If the number of relays are bounded, the problem can be formulated as a programming problem with finite variables.

Theorem 2

For an optimal multicast network with $h = 2$ (half integral capacities), there are $(2n - 3)(2n - 2) + n - 1$ relay nodes at most, where n is the number of terminals.

Theorem 3

For a min-cost acyclic multicast network of max-flow h, there are $h^3(n - 1)^2 + n^h(n + h^3(n - 1)^2 - 2)$ relay nodes at most.
Conclusion & Future Work

What we have done:

- Min-cost multicast network \neq minimum Steiner tree.
- Network coding is unnecessary for 3 terminals.
- The number of required relay nodes in an acyclic optimal network is upper-bounded.

For future work,

- Is the min cost achievable with a finite network?
- Computational complexity: P or NP-hard?
- How much difference can network coding make?

The case of Multiple Unicast is considered in another paper.
Thanks! & Questions?